Some topological operations and $N_{nc} Z^*$ continuity in N_{nc} topological spaces

Cite as: AIP Conference Proceedings **2364**, 020017 (2021); https://doi.org/10.1063/5.0063130 Published Online: 23 September 2021

K. Balasubramaniyan, A. Gobikrishnan and A. Vadivel

ARTICLES YOU MAY BE INTERESTED IN

Neutrosophic e-open maps, neutrosophic e-closed maps and neutrosophic e-homeomorphisms in neutrosophic topological spaces

AIP Conference Proceedings 2364, 020016 (2021); https://doi.org/10.1063/5.0062880

Characterizations of quasi N_{nc} e-open (closed) functions in N_{nc} topological spaces
AIP Conference Proceedings 2364, 020023 (2021); https://doi.org/10.1063/5.0062887

Strongly faint N_{nc}e-continuous function in N_{nc} topological spaces

AIP Conference Proceedings 2364, 020022 (2021); https://doi.org/10.1063/5.0062886

Some Topological Operations and N_{nc} Z^* Continuity in N_{nc} Topological Spaces

K. Balasubramaniyan^{1,b)}, A. Gobikrishnan^{2,c)} and A. Vadivel^{3,a)}

¹PG Department of Mathematics, Arignar Anna Government Arts College, Attur, Tamil Nadu, India.

²Department of Mathematics, Thiruvalluvar Government Arts College, Rasipuram, Tamil Nadu, India.

³Department of Mathematics, Government Arts College (Autonomous), Karur, Tamil Nadu, India.

^{a)}Corresponding author : avmaths@gmail.com

^{b)}kgbalumaths@gmail.com

^{c)}vainugobi@gmail.com

Abstract. The aim of this paper is to introduce and study the notion of $N_{nc}Z^*$ -continuity. Some characterizations of these notions are presented. Also, some topological operations such as: $N_{nc}Z^*$ -boundary, $N_{nc}Z^*$ -border, $N_{nc}Z^*$ -exterior, $N_{nc}Z^*$ -limit point are introduced.

Keywords and Phrases: $N_{nc}Z^*$ o-sets, $N_{nc}Z^*$ -boundary, $N_{nc}Z^*$ -border, $N_{nc}Z^*$ -exterior, $N_{nc}Z^*$ -limit point, $N_{nc}Z^*$ -neighbourhood and $N_{nc}Z^*$ -continuity.

AMS 2000 Subject Classification: 54D10, 54C05, 54C08.

INTRODUCTION

Smarandache's neutrosophic framework have wide scope of constant applications for the fields of Computer Science, Information Systems, Applied Mathematics, Artificial Intelligence, Mechanics, dynamic, Medicine, Electrical & Electronic, and Management Science and so forth [1, 2, 3, 4, 20, 21]. Topology is an classical subject, as a generalization topological spaces numerous kinds of topological spaces presented throughout the year. Smarandache [14] characterized the Neutrosophic set on three segment Neutrosophic sets (T-Truth, F-Falsehood, I-Indeterminacy).

Neutrosophic topological spaces (nts's) presented by Salama and Alblowi [11]. Lellies Thivagar et al. [9] was given the geometric existence of N topology, which is a non-empty set equipped with N arbitrary topologies. Lellis Thivagar et al. [10] introduced the notion of N_n -open (closed) sets in N neutrosophic crisp topological spaces. Al-Hamido et al. [7] investigate the chance of extending the idea of neutrosophic crisp topological spaces into N-neutrosophic crisp topological spaces and examine a portion of their essential properties. In 2008, Ekici [8] introduced the notion of e-open sets in topology. In 2020, Vadivel and John Sundar [17] introduced N-neutrosophic δ -open, N-neutrosophic δ -semiopen and N-neutrosophic δ -preopen sets are introduced.

The purpose of this paper is to introduce and study the notion of $N_{nc}Z^*$ -continuity. Some topological operations such as: $N_{nc}Z^*$ limit point, $N_{nc}Z^*$ -boundary and $N_{nc}Z^*$ -exterior etc. are introduced. Also, some characterizations of these notions are presented.

PRELIMINARIES

The definitions of neutrosophic crisp set (in short, ncs) are studied in [12, 13]. In [7], N_{nc} -topological space (briefly, $N_{nc}ts$), N_{nc} -open sets ($N_{nc}os$), N_{nc} -closed sets ($N_{nc}cs$), N_{nc} interior of H (briefly, $N_{nc}int(H)$) and N_{nc} closure of H (briefly, $N_{nc}cl(H)$) are introduced. Also, N_{nc} -regular open [15] set (briefly, $N_{nc}ros$), N_{nc} -pre open set (briefly, $N_{nc}\rho s$), N_{nc} -pre open set (briefly, $N_{nc}\rho s$), $N_{nc}\rho s$ 0, N_{nc}

SOME TOPOLOGICAL OPERATIONS

Definition 1: Let $(X, N_{nc}\tau)$ be a $N_{nc}ts$ and L be a N_{nc} set of X. Then the $N_{nc}Z^*$ -boundary of L (briefly, $N_{nc}Z^*b(L)$) is defined by $N_{nc}Z^*b(L) = N_{nc}Z^*cl(L) \cap N_{nc}Z^*cl(X \setminus L)$.

Theorem 2: If L is a N_{nc} sets of a $N_{nc}ts$ $(X, N_{nc}\tau)$, then the statements

- (i) $N_{nc}Z^*b(L)$ is $N_{nc}Z^*c$,
- (ii) $N_{nc}Z^*b(L) = N_{nc}Z^*b(X\backslash L),$
- (iii) $N_{nc}Z^*b(L) = N_{nc}Z^*cl(L)\backslash N_{nc}Z^*int(L),$
- (iv) $N_{nc}Z^*b(L) \cap N_{nc}Z^*int(L) = \phi$,
- (v) $N_{nc}Z^*b(L) \cap N_{nc}Z^*int(L) = N_{nc}Z^*cl(L),$
- (vi) $N_{nc}Z^*b(N_{nc}Z^*b(L)) \subseteq N_{nc}Z^*b(L)$,
- (vii) $N_{nc}Z^*b(N_{nc}Z^*int(L)) \subseteq N_{nc}Z^*b(L)$,
- (viii) $N_{nc}Z^*b(N_{nc}Z^*cl(L)) \subseteq N_{nc}Z^*b(L),$
- (ix) $N_{nc}Z^*int(L) = L \setminus N_{nc}Z^*b(L),$
- (x) $N_{nc}Z^*b(L \cap M) \subseteq N_{nc}Z^*b(L) \cup N_{nc}Z^*b(M)$

are hold.

Proof. (i) It is clear. Others are also similar.

Theorem 3: If L is a N_{nc} set of a $N_{nc}ts$ X, then the statements

- (i) L is a $N_{nc}Z^*o$ set iff $A \cap N_{nc}Z^*b(L) = \phi$,
- (ii) L is a $N_{nc}Z^*c$ set iff $N_{nc}Z^*b(L) \subset L$,
- (iii) L is a $N_{nc}Z^*clo$ set iff $N_{nc}Z^*b(L) = \phi$

are hold.

Proof. (i) It follows from Theorem 2.

Definition 4: $N_{nc}Z^*Bd(L) = L \setminus N_{nc}Z^*int(L)$ is said to be $N_{nc}Z^*$ -border of L.

Theorem 5: For a N_{nc} set L of a $N_{nc}ts$ X, then the statements

- (i) $N_{nc}Z^*Bd(L) \subseteq L$, for any N_{nc} set L of X,
- (ii) $L = N_{nc}Z^*int(L) \cup N_{nc}Z^*Bd(L),$
- (iii) $N_{nc}Z^*int(L) \cap N_{nc}Z^*Bd(L) = \phi,$
- (iv) $L \text{ is } N_{nc}Z^*o \text{ iff } N_{nc}Z^*Bd(L) = \phi,$
- (v) $N_{nc}Z^*Bd(N_{nc}Z^*int(L)) = \phi$,
- (vi) $N_{nc}Z^*int(N_{nc}Z^*Bd(L)) = \phi$,

- (vii) $N_{nc}Z^*Bd(N_{nc}Z^*Bd(L)) = N_{nc}Z^*Bd(L),$
- (viii) $N_{nc}Z^*Bd(L) = L \cap N_{nc}Z^*cl(X \setminus L)$

are hold.

Proof. (vi) Let $x \in N_{nc}Z^*int(N_{nc}Z^*Bd(L))$. Then $x \in N_{nc}Z^*Bd(L)$. Since, $N_{nc}Z^*Bd(L) \subseteq L$, then $x \in N_{nc}Z^*int(N_{nc}Z^*Bd(L)) \subseteq N_{nc}Z^*int(L)$. Hence, $x \in N_{nc}Z^*int(L) \cap N_{nc}Z^*Bd(L)$, which contradicts (iii). Thus, $N_{nc}Z^*int(N_{nc}Z^*Bd(L)) = \phi$. (viii) $N_{nc}Z^*Bd(L) = L \setminus N_{nc}Z^*int(L) = L \setminus (X \setminus N_{nc}Z^*cl(X \setminus L)) = L \cap N_{nc}Z^*cl(X \setminus L)$.

Definition 6: Let $(X, N_{nc}\tau)$ be a $N_{nc}ts$ and L be N_{nc} set of X. Then the N_{nc} set $X \setminus (N_{nc}Z^*cl(L))$ is called the $N_{nc}Z^*$ -exterior of L and is denoted by $N_{nc}Z^*ext(L)$. A point $p \in X$ is called a $N_{nc}Z^*$ -exterior point of L, if it is a $N_{nc}Z^*$ -interior point of $X \setminus L$.

Theorem 7: If L and M are two N_{nc} sets of a $N_{nc}ts(X, N_{nc}\tau)$, then the statement

- (i) $N_{nc}Z^*ext(L)$ is $N_{nc}Z^*o$,
- (ii) $N_{nc}Z^*ext(L) = N_{nc}Z^*int(X \setminus L),$
- (iii) $N_{nc}Z^*ext(N_{nc}Z^*ext(L)) = N_{nc}Z^*int(N_{nc}Z^*cl(L)),$
- (iv) $N_{nc}Z^*ext(X\backslash N_{nc}Z^*ext(L)) = N_{nc}Z^*ext(L),$
- (v) $N_{nc}Z^*int(L) \subseteq N_{nc}Z^*ext(N_{nc}Z^*ext(L)),$
- (vi) $N_{nc}Z^*ext(L) \cap N_{nc}Z^*b(L) = \phi$,
- (vii) $N_{nc}Z^*ext(L) \cup N_{nc}Z^*b(L) = N_{nc}Z^*cl(X \setminus L),$
- (viii) $\{N_{nc}Z^*int(L), N_{nc}Z^*b(L) \text{ and } N_{nc}Z^*ext(L)\}\$ form a partition of X,
- (ix) If $A \subseteq B$, then $N_{nc}Z^*ext(M) \subseteq N_{nc}Z^*ext(L)$,
- (x) $N_{nc}Z^*ext(\phi) = X$ and $N_{nc}Z^*ext(X) = \phi$,
- (xi) $N_{nc}Z^*ext(L \cup M) \subseteq N_{nc}Z^*ext(L) \cup N_{nc}Z^*ext(M)$,
- (xii) $N_{nc}Z^*ext(L \cap M) \supseteq N_{nc}Z^*ext(L) \cap N_{nc}Z^*ext(M)$,
- (xiii) $N_{nc}Z^*ext(L \cup M) \subseteq N_{nc}Z^*ext(L \cap M)$

are hold.

Proof. It follows from Theorems 2 in [6] and 3.

Remark 8: The inclusion relation in parts (xi) and (xii) of the above theorem cannot be replaced by equality is shown in the following example.

Example 9: Let $X = \{a_1, b_1, c_1, d_1, e_1\}$, ${}_{nc}\tau_1 = \{\phi_N, X_N, A, B, C\}$, ${}_{nc}\tau_2 = \{\phi_N, X_N\}$. $A = \langle \{c_1\}, \{\phi\}, \{a_1, b_1, d_1, e_1\} \rangle$, $B = \langle \{a_1, b_1\}, \{\phi\}, \{c_1, d_1, e_1\} \rangle$, $C = \langle \{a_1, b_1, c_1\}, \{\phi\}, \{d_1, e_1\} \rangle$, then we have $2_{nc}\tau = \{\phi_N, X_N, A, B, C\}$, the sets $L = \langle \{c_1, d_1\}, \{\phi\}, \{a_1, b_1, e_1\} \rangle$ and $M = \langle \{c_1, e_1\}, \{\phi\}, \{a_1, b_1, d_1\} \rangle$. $2_{nc}Z^*ext(L) = \langle \{a_1, b_1, e_1\}, \{\phi\}, \{c_1, d_1\} \rangle$, $2_{nc}Z^*ext(M) = \langle \{a_1, b_1, d_1\}, \{\phi\}, \{c_1, e_1\} \rangle$, $2_{nc}Z^*ext(L \cup M) = \langle \{a_1, b_1\}, \{\phi\}, \{c_1, d_1, e_1\} \rangle$ and $2_{nc}Z^*ext(L \cap M) = \langle \{a_1, b_1, d_1, e_1\}, \{\phi\}, \{c_1\} \rangle$. Then

- (i) $2_{nc}Z^*ext(L) \cup 2_{nc}Z^*ext(M) \not\subset 2_{nc}Z^*ext(L \cup M)$.
- (ii) $2_{nc}Z^*ext(L \cap M) \not\subset 2_{nc}Z^*ext(L) \cap 2_{nc}Z^*ext(M)$.

Definition 10: Let L be a N_{nc} set of a $N_{nc}ts$ $(X, N_{nc}\tau)$. Then a point $p \in X$ is called a $N_{nc}Z^*$ -limit point of a set $L \subseteq X$ if every $N_{nc}Z^*o$ set $O \subseteq X$ containing p contains a point of L other than p. The set of all $N_{nc}Z^*$ -limit points of L is called a $N_{nc}Z^*$ -derived set of L and is denoted by $N_{nc}Z^*d(L)$.

Theorem 11: If L and M are two N_{nc} sets of a $N_{nc}ts$ X, then the statement

- (i) If $L \subseteq M$, then $N_{nc}Z^*d(L) \subseteq N_{nc}Z^*d(M)$,
- (ii) $N_{nc}Z^*d(L) \cup N_{nc}Z^*d(M) \subseteq N_{nc}Z^*d(L \cup M),$
- (iii) $N_{nc}Z^*d(L \cap M) \subseteq N_{nc}Z^*d(L) \cap N_{nc}Z^*d(M)$,
- (iv) L is a $N_{nc}Z^*c$ set iff it contains each of its $N_{nc}Z^*$ -limit points,
- (v) $N_{nc}Z^*cl(L) = L \cup N_{nc}Z^*d(L)$

are hold.

Proof: It is clear.

Definition 12: A N_{nc} set P of a $N_{nc}ts$ $(X, N_{nc}\tau)$ is called a $N_{nc}Z^*$ -neighbourhood (briefly, $N_{nc}Z^*nbd$) of a point $p \in X$ if there exists a $N_{nc}Z^*o$ set $L \ni p \in L \subseteq P$. The class of all $N_{nc}Z^*nbd$'s of $p \in X$ is called the $N_{nc}Z^*$ -neighbourhood system of p and denoted by $N_{nc}Z^*P_p$.

Theorem 13: A N_{nc} set P of a $N_{nc}ts$ X is $N_{nc}Z^*o$ iff it is $N_{nc}Z^*nbd$, \forall point $p \in P$.

Proof. It is clear.

Theorem 14: In a $N_{nc}ts(X, N_{nc}\tau)$. Let $N_{nc}Z*P_p$ be the $N_{nc}Z^*nbd$ System of a point $p \in X$. Then the statement

- (i) $N_{nc}Z^*P_p$ is not empty and p belongs to each member of $N_{nc}Z^*P_p$,
- (ii) Each superset of members of P_p belongs to $N_{nc}Z^*P_p$,
- (iii) Each member $P \in N_{nc}Z^*P_p$ is a superset of a member $L \in N_{nc}Z^*P_p$, where L is $N_{nc}Z^*nbd$ of each point $p \in L$

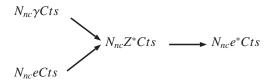
are hold.

Proof. Obvious.

$N_{nc}Z^*$ -CONTINUOUS MAPPINGS

Definition 15: A function $h:(X,N_{nc}\tau)\to (Y,N_{nc}\sigma)$ is called $N_{nc}Z^*$ -continuous (briefly, $N_{nc}Z^*Cts$) if $h^{-1}(V)$ is $N_{nc}Z^*o$ in X for each $V\in N_{nc}\sigma$.

Remark 16: Let $h:(X,N_{nc}\tau)\to (Y,N_{nc}\sigma)$ be mapping from a space $(X,N_{nc}\tau)$ into a space $(Y,N_{nc}\sigma)$, The following hold:



Now, the following examples show that these implication are not reversible.

Example 17: Let $X = \{a_1, b_1, c_1, d_1\} = Y$, ${}_{nc}\tau_1 = \{\phi_N, X_N, A, B, C, D\}$, ${}_{nc}\tau_2 = \{\phi_N, X_N, E, F\}$. $A = \langle \{a_1\}, \{\phi\}, \{b_1, c_1, d_1\} \rangle$, $B = \langle \{c_1\}, \{\phi\}, \{a_1, b_1, d_1\} \rangle$, $C = \langle \{a_1, c_1\}, \{\phi\}, \{b_1, d_1\} \rangle$, $D = \langle \{a_1, c_1, d_1\}, \{\phi\}, \{b_1\} \rangle$, $E = \langle \{a_1, b_1\}, \{\phi\}, \{c_1, d_1\} \rangle$, $F = \langle \{a_1, b_1, c_1\}, \{\phi\}, \{d_1\} \rangle$, then we have $2_{nc}\tau = \{\phi_N, X_N, A, B, C, D, E, F\}$. $nc\sigma_1 = \{\phi_N, Y_N, G, H\}$, $nc\sigma_2 = \{\phi_N, Y_N\}$. $G = \langle \{a_1, d_1\}, \{\phi\}, \{b_1, c_1\} \rangle$, $G = \langle \{a_1, d_1\}, \{\phi\}, \{b_1, c_1\} \rangle$, then we have $2_{nc}\sigma = \{\phi_N, Y_N, G, H\}$. Define $h : (X, 2_{nc}\tau) \to (Y, 2_{nc}\sigma)$ as identity map, then

- (i) $2_{nc}Z^*Cts$ but not $2_{nc}\gamma Cts$, the set $h^{-1}(\langle \{b_1, c_1\}, \{\phi\}, \{a_1, d_1\} \rangle) = \langle \{b_1, c_1\}, \{\phi\}, \{a_1, d_1\} \rangle$ is a $2_{nc}Z^*os$ but not $2_{nc}\gamma os$.
- (ii) $2_{nc}Z^*Cts$ but not $2_{nc}eCts$, the set $h^{-1}(\langle \{a_1,d_1\},\{\phi\},\{b_1,c_1\}\rangle) = \langle \{a_1,d_1\},\{\phi\},\{b_1,c_1\}\rangle$ is a $2_{nc}Z^*os$ but not $2_{nc}eos$.

Example 18: In Example 17, ${}_{nc}\sigma_1 = \{\phi_N, Y_N, G\}$, ${}_{nc}\sigma_2 = \{\phi_N, Y_N\}$. $G = \langle \{b_1, d_1\}, \{\phi\}, \{a_1, c_1\} \rangle$, then we have $2_{nc}\sigma = \{\phi_N, Y_N, G\}$. Define $f : (X, 2_{nc}\tau) \to (Y, 2_{nc}\sigma)$ as identity map, then $2_{nc}e^*Cts$ but not $2_{nc}Z^*Cts$, the set $h^{-1}(\langle \{b_1, d_1\}, \{\phi\}, \{a_1, c_1\} \rangle) = \langle \{b_1, d_1\}, \{\phi\}, \{a_1, c_1\} \rangle$ is a $2_{nc}e^*os$ but not $2_{nc}Z^*os$.

Theorem 19: Let $h:(X,N_{nc}\tau)\to (Y,N_{nc}\sigma)$ be a mapping. Then the statements

- (i) h is $N_{nc}Z^*Cts$,
- (ii) For each $l \in X$ and $M \in N_{nc}\sigma$ containing h(X), there exists $L \in N_{nc}Z^*OS(X)$ containing $l \ni h(L) \subseteq M$,
- (iii) The inverse image of each $N_{nc}c$ set in Y is $N_{nc}Z^*c$ in X,
- $(\mathrm{iv}) \qquad N_{nc}int(N_{nc}cl(h^{-1}(M))) \cap N_{nc}cl(N_{nc}int_{\delta}(h^{-1}(M))) \subseteq h^{-1}(N_{nc}cl(M)), \, \text{for each } M \subseteq Y,$
- (v) $h^{-1}(N_{nc}int(M)) \subseteq N_{nc}cl(N_{nc}int(h^{-1}(M))) \cup N_{nc}int(N_{nc}cl_{\delta}(h^{-1}(M)))$, for each $M \subseteq Y$,
- (vi) If h is bijective, then $N_{nc}int(h(L)) \subseteq h(N_{nc}cl(N_{nc}int(L))) \cup h(N_{nc}int(N_{nc}cl_{\delta}(L))), \forall L \subseteq X$,
- (vii) If h is bijective, then $h(N_{nc}int(N_{nc}cl(L))) \cap h(N_{nc}cl(N_{nc}int_{\delta}(L))) \subseteq N_{nc}cl(h(L)), \forall L \subseteq X$

are equivalent.

Proof. (i) \Leftrightarrow (ii) and (i) \Leftrightarrow (iii) are obvious,

 $(iii) \Rightarrow (iv)$.

Let $M \subseteq Y$, then by (iii) $h^{-1}(N_{nc}cl(M))$ is $N_{nc}Z^*c$. This means $h^{-1}(N_{nc}cl(M)) \supseteq N_{nc}int(N_{nc}cl(h^{-1}(N_{nc}cl(M)))) \cap N_{nc}cl(N_{nc}int_{\delta}(h^{-1}(N_{nc}cl(M)))) \supseteq N_{nc}int(N_{nc}cl(h^{-1}(M))) \cap N_{nc}cl(N_{nc}int_{\delta}(h^{-1}(M)))$.

- (iv) \Rightarrow (v). By replacing $Y \setminus M$ instead of M in (iv) we have $N_{nc}int(N_{nc}cl(h^{-1}(Y \setminus M))) \cap N_{nc}cl(N_{nc}int_{\delta}(h^{-1}(Y \setminus M)))$ $\subseteq h^{-1}(N_{nc}cl(Y \setminus M))$ and therefore $h^{-1}(N_{nc}int(M)) \subseteq N_{nc}cl(N_{nc}int(h^{-1}(M))) \cup N_{nc}int(N_{nc}cl_{\delta}(h^{-1}(M)))$,
- $(v) \Rightarrow (vi)$. Follows directly by replacing L instead of $h^{-1}(M)$ in (v) and applying the bijection of h,
- (vi) \Rightarrow (vii). By complementation of (vi) and applying the bijective of h, we have $h(N_{nc}int(N_{nc}cl(X\setminus L))) \cap h(N_{nc}cl(N_{nc}int_{\delta}(X\setminus L))) \subseteq N_{nc}cl(h(X\setminus L))$. We obtain the required by replacing L instead of $X\setminus L$,
- (vii) \Rightarrow (i). Let $L \in N_{nc}\sigma$. But $M = Y \setminus L$, by (vii) we have $h(N_{nc}int(N_{nc}cl(h^{-1}(M)))) \cap h(N_{nc}cl(N_{nc}int_{\delta}(h^{-1}(M)))) \subseteq N_{nc}cl(hh^{-1}(M)) \subseteq N_{nc}cl(M) = M$. So $N_{nc}int(N_{nc}cl(h^{-1}(M))) \cap N_{nc}cl(N_{nc}int_{\delta}(h^{-1}(M))) \subseteq h^{-1}(M)$ implies $h^{-1}(M)$ is $N_{nc}Z^*c$ and therefore $h^{-1}(L) \in N_{nc}Z^*oS(X)$.

Theorem 20: Let $h:(X,N_{nc}\tau)\to (Y,N_{nc}\sigma)$ be a mapping. Then the statements

- (i) h is $N_{nc}Z^*Cts$,
- (ii) $N_{nc}Z^*cl(h^{-1}(M)) \subseteq h^{-1}(N_{nc}cl(M)), \forall N_{nc} \text{ set } M \text{ of } Y,$
- (iii) $h(N_{nc}Z^*cl(L)) \subseteq N_{nc}cl(h(L)), \forall N_{nc} \text{ set } L \text{ of } X,$
- (iv) $N_{nc}Z^*Bd(h^{-1}(M)) \subseteq h^{-1}(Bd(M)), \forall N_{nc} \text{ set } M \text{ of } Y,$
- (v) $h(N_{nc}Z^*d(L)) \subseteq N_{nc}cl(h(L)), \forall N_{nc} \text{ set } L \text{ of } X,$
- (vi) $h^{-1}(N_{nc}int(M)) \subseteq N_{nc}Z^*int(h^{-1}(M)), \forall N_{nc} \text{ set } M \text{ of } Y$

are equivalent.

Proof. (i) \Rightarrow (ii). Let M be N_{nc} set of Y, $h^{-1}(N_{nc}cl(M))$ is $N_{nc}Z^*c$ in X. Then $N_{nc}Z^*cl(h^{-1}(M)) \subseteq N_{nc}Z^*cl(h^{-1}(M))$ $\subseteq N_{nc}Z^*cl(h^{-1}(M))$ $\subseteq N_{nc}Z^*cl(h^{-1}(M))$

(ii) \Rightarrow (iii). Let L be N_{nc} set of X then $h(L) \subseteq Y$, by (ii), $h^{-1}(N_{nc}cl(h(L))) \supseteq N_{nc}Z^*cl(h^{-1}(h(L))) \supseteq N_{nc}Z^*cl(L)$. Therefore, $N_{nc}cl(h(L)) \supseteq hh^{-1}(N_{nc}cl(h(L))) \supseteq h(N_{nc}Z^*cl(L))$.

(iii) \Rightarrow (i). Let M be $N_{nc}o$ set of Y. Then, $L = Y \setminus M$ is N_{nc} closed in Y and $h^{-1}(L) = X \setminus h^{-1}(M)$.

Hence, by (iii), $h(N_{nc}Z^*cl(h^{-1}(L))) \subseteq N_{nc}cl(h(h^{-1}(L))) \subseteq N_{nc}cl(L) = L$ thus, $N_{nc}Z^*cl(h^{-1}(L)) \subseteq h^{-1}(L)$, So, $h^{-1}(L) = X \setminus h^{-1}(M) \in N_{nc}Z^*CS(X)$ and therefore $h^{-1}(M) \in N_{nc}Z^*OS(X)$,

- (iv) \Rightarrow (vi). Let *M* be N_{nc} set of *Y*. Then by (vi), $N_{nc}Z^*Bd(h^{-1}(M)) = h^{-1}(M) \setminus N_{nc}Z^*int(h^{-1}(M)) \subseteq h^{-1}(N_{nc}Bd(M)) = h^{-1}(M \setminus N_{nc}int(M)) = h^{-1}(M$
- (vi) \Rightarrow (iv). Let $M \subseteq Y$. Then by (vi), $h^{-1}(N_{nc}int(M)) \subseteq N_{nc}Z^*int(h^{-1}(M))$ we have $h^{-1}(M) \setminus N_{nc}Z^*int(h^{-1}(M)) \subseteq h^{-1}(M) \setminus h^{-1}(N_{nc}int(M)) \rightarrow N_{nc}Z^*Bd(h^{-1}(M)) \subseteq h^{-1}(N_{nc}Bd(M))$.
- (i) \rightarrow (v). It is obvious, since h is $N_{nc}Z^*Cts$ and by (iii), $h(N_{nc}Z^*cl(L)) \subseteq N_{nc}cl(h(L))$, \forall L be N_{nc} set of X. So, $h(N_{nc}Z^*d(L)) \subseteq h(N_{nc}Z^*cl(L)) \subseteq N_{nc}cl(h(L))$.
- (v) \Rightarrow (i). Let M be $N_{nc}o$ set of Y. Then, $L = Y \setminus M$ is N_{nc} closed in Y and $h^{-1}(L) = X \setminus h^{-1}(M)$.

Hence, by (v), $h(N_{nc}Z^*d(h^{-1}(L))) \subseteq N_{nc}cl(h(h^{-1}(L))) \subseteq N_{nc}cl(L) = L$. Hence, $N_{nc}Z^*d(h^{-1}(L)) \subseteq h^{-1}(L)$. By Theorem 7, $h^{-1}(L) = X \setminus h^{-1}(M)$ is $N_{nc}Z^*c$ in X. Therefore, $h^{-1}(M)$ is $N_{nc}Z^*c$ in X.

- (i) \Rightarrow (vi). Let M be N_{nc} set of Y. Then $h^{-1}(N_{nc}int(M))$ is $N_{nc}Z^*o$ in X. Thus, $h^{-1}(N_{nc}int(M)) = N_{nc}Z^*int(h^{-1}(N_{nc}int(M))) = N_{nc}Z^*int(h^{-1}(M))$. Therefore, $h^{-1}(N_{nc}int(M)) \subseteq N_{nc}Z^*int(h^{-1}(M))$.
- (v) \Rightarrow (i). Let $M \subseteq Y$ be an $N_{nc}o$ set Y. Then $h^{-1}(M) = h^{-1}(N_{nc}int(M)) \subseteq h^{-1}(N_{nc}Z^*int(M))$. Hence, $h^{-1}(M)$ is $N_{nc}Z^*o$ in X. Therefore, h is $N_{nc}Z^*Cts$.

Remark 21: The composition of two $N_{nc}Z^*Cts$ mappings need not be $N_{nc}Z^*Cts$.

Example 22: Let $X = Y = Z = \{a_1, b_1, c_1, d_1, e_1\}$, $_{nc}\tau_1 = \{\phi_N, X_N, A, B, C\}$, $_{nc}\tau_2 = \{\phi_N, X_N\}$. $A = \langle \{a_1, b_1\}, \{\phi\}, \{c_1, d_1, e_1\} \rangle$, $B = \langle \{c_1, d_1\}, \{\phi\}, \{a_1, b_1, e_1\} \rangle$, $C = \langle \{a_1, b_1, c_1, d_1\}, \{\phi\}, \{e_1\} \rangle$, then we have $2_{nc}\tau = \{\phi_N, X_N, A, B, C\}$. $_{nc}\sigma_1 = \{\phi_N, Y_N, D\}$, $_{nc}\sigma_2 = \{\phi_N, Y_N\}$. $D = \langle \{a_1, b_1\}, \{\phi\}, \{c_1, d_1, e_1\} \rangle$, then we have $2_{nc}\sigma = \{\phi_N, Y_N, D\}$. $_{nc}\mu_1 = \{\phi_N, Z_N, E\}$, $_{nc}\mu_2 = \{\phi_N, Z_N\}$. $E = \langle \{a_1, e_1\}, \{\phi\}, \{b_1, c_1, d_1\} \rangle$, then we have $2_{nc}\mu = \{\phi_N, Z_N, E\}$. Let $h : (X, 2_{nc}\tau) \to (Y, 2_{nc}\sigma)$ and $g : (Y, 2_{nc}\sigma) \to (Z, 2_{nc}\mu)$ are defined as identity function. It is clear that h and g are $2_{nc}Z^*Cts$ but $g \circ h$ is not $2_{nc}Z^*Cts$.

REFERENCES

- [1] M. Abdel-Basset, V. Chang, M. Mohamed and F. Smarandche, *A Refined Approach for Forecasting Based on Neutrosophic Time Series*, Symmentry, **11** (4) (2019) 457.
- [2] M. Abdel-Basset, G. Manogaran, A. Gamal and V. Chang, A Novel Intelligent Medical Decision Support Model Based on Soft Computing and IoT, IEEE Internet of Things Journal, (2019).
- [3] M. Abdel-Basset, and M. Mohamed, A novel and powerful framework based on neutrosophic sets to aid patients with cancer, Future Generation Computer Systems, 98 (2019) 144-153.
- [4] M. Abdel-Basset, A. Gamal, G. Manogaran and H. V. Long *A novel group decision making model based on neutrosophic sets for heart disease diagnosis*, Multimedia Tools and Applications, (2019) 1-26.
- [5] K. Balasubramaniyan, A. Gobikrishnan and A. Vadivel, $N_{nc}Z^*$ -open sets in N_{nc} Topological Spaces, Turkish Journal of Computer and Mathematics Education, **12** (1S) (2021), 363-368.
- [6] K. Balasubramaniyan, A. Gobikrishnan and A. Vadivel, On N_{nc} Z*-open and N_{nc} Z*-closed Functions, Submitted.
- [7] R. K. Al-Hamido, T. Gharibah, S. Jafari and F. Smarandache, *On neutrosophic crisp topology via N-topology*, Neutrosophic Sets and Systems, **23** (2018), 96-109.
- [8] Erdal Ekici, On e-open sets, \mathcal{DP}^* -sets and $\mathcal{DP}\epsilon^*$ -sets and decomposition of continuity, The Arabian Journal for Science and Engineering, 33 (2008) 271-282.
- [9] M. Lellis Thivagar, V. Ramesh, M D. Arockia, *On new structure of N-topology*, Cogent Mathematics (Taylor and Francis), **3** (2016):1204104.
- [10] M. Lellis Thivagar, S. Jafari, V. Antonysamy and V.Sutha Devi, *The ingenuity of neutrosophic topology via N-topology*, Neutrosophic Sets and Systems, **19** (2018), 91-100.
- [11] A. A. Salama and S. A. Alblowi, *Generalized neutrosophic set and generalized neutrosophic topological spaces*, Journal computer sci. engineering, **2** (7) (2012), 31-35.
- [12] A. A. Salama, F. Smarandache and V. Kroumov, *Neutrosophic crisp sets and neutrosophic crisp topological spaces*, Neutrosophic Sets and Systems, **2** (2014), 25-30.
- [13] A. A. Salama and F. Smarandache, *Neutrosophic crisp set theory*, Educational Publisher, Columbus, Ohio, USA, 2015.
- [14] F. Smarandache, *Neutrosophy and neutrosophic logic*, First International Conference on Neutrosophy, Neutrosophic Logic, Set, Probability, and Statistics, University of New Mexico, Gallup, NM 87301, USA (2002).
- [15] A. Vadivel and C. John Sundar, γ -Open Sets in N_{nc} -Topological Spaces, Advances in Mathematics: Scientific Journal, **9** (4) (2020), 2197-2202.
- [16] A. Vadivel and C. John Sundar, $N_{nc}\beta$ -open sets, Advances in Mathematics: Scientific Journal, **9** (4) (2020), 2203-2207.
- [17] A. Vadivel and C. John Sundar, $N_{nc}\delta$ -open sets, Submitted.
- [18] A. Vadivel and P. Thangaraja, *e-open sets in N_{nc} topological spaces*, Journal of Physics: Conference Series, **1724** (2021), 012007.
- [19] A. Vadivel and P. Thangaraja, *e-continuous and somewhat e-continuity in* N_{nc} *topological spaces*, Journal of Physics: Conference Series, **1724** (2021), 012008.
- [20] V. Venkateswaran Rao and Y. Srinivasa Rao, *Neutrosophic Pre-open sets and Pre-closed sets in Neutrosophic Topology*, International Journal of chemTech Research, **10** (10) 449-458.
- [21] F. Wadei, Al-Omeri and Saeid Jafari, *Neutrosophic pre-continuity multifunctions and almost pre-continuity multifunctions*, Neutrosophic Sets and Systems, **27** (2019) 53-69.