Neutrosophic Z-continuous maps and Z-irresolute maps

Cite as: AIP Conference Proceedings **2364**, 020020 (2021); https://doi.org/10.1063/5.0062905 Published Online: 23 September 2021

N. Moogambigai, A. Vadivel and S. Tamilselvan

ARTICLES YOU MAY BE INTERESTED IN

Neutrosophic e-open maps, neutrosophic e-closed maps and neutrosophic e-homeomorphisms in neutrosophic topological spaces

AIP Conference Proceedings 2364, 020016 (2021); https://doi.org/10.1063/5.0062880

Strongly faint N_{nc}e-continuous function in N_{nc} topological spaces

AIP Conference Proceedings 2364, 020022 (2021); https://doi.org/10.1063/5.0062886

Characterizations of quasi N_{nc} e-open (closed) functions in N_{nc} topological spaces AIP Conference Proceedings **2364**, 020023 (2021); https://doi.org/10.1063/5.0062887

Neutrosophic Z-Continuous Maps and Z-Irresolute Maps

N.Moogambigai^{1,b)}, A.Vadivel^{2,a)} and S.Tamilselvan^{3,c)}

¹Department of Mathematics, Thiruvalluvar Government Arts College, Tamil Nadu, India. ²Department of Mathematics, Government Arts College (Autonomous) Karur, Tamil Nadu, India. ³Mathematics Section (FEAT), Annamalai University, Annamalainagar, Tamil Nadu, India.

a)Corresponding author: avmaths@gmail.com
b)toyesmohan@gmail.com
c)tamil au@yahoo.com

Abstract. Aim of this present paper is, we introduce and investigate neutrosophic *Z*-continuous maps which is a new kind of neutrosophic continuous in neutrosophic topological spaces. Also discussed about some properties and characterization of neutrosophic *Z*-irresolute maps.

Keywords and Phrases. Neutrosophic Z-closed sets, neutrosophic Z-continuous maps and neutrosophic Z-irresolute maps.

AMS 2000 Subject Classification: 03E72, 54A10, 54A40, 54C05.

INTRODUCTION

The concept of fuzzy set (briefly, fs) was introduced by Lotfi Zadeh in 1965 [20], then Chang depended the fuzzy set to introduce the concept of fuzzy topological space (briefly, fts) in 1968 [6]. After that the concept of fuzzy set was developed into the concept of intutionistic fuzzy set (briefly, Ifs) by Atanassov in 1983[2,3,4], which gives a degree of membership and a degree of non-membership functions.

In 2005 Smaradache [14] study the concept of neutrosophic set (briefly, $N_s s$). After that and as developed the term of neutrosophic set, Salama has studied neutrosophic topological space (briefly, $N_s t s$) and many of its applications [9,10,11,12]. In 2012 Salama and Alblowi defined neutrosophic topological space [9].

Saha [15] defined δ -open sets in topological spaces. Vadivel et.al. [17] introduced δ -open sets in a neutrosophic topological space. In 2008, Ekici [7] introduced the notion of e-open sets in a general topology. In 2014, Seenivasan et.al. [13] introduced e-open sets in a fuzzy topological space along with fuzzy e-continuity. Vadivel et.al. [5] studied fuzzy e-open sets in intuitionistic fuzzy topological space.

In this paper, we develop the concept of neutrosophic Z continuity in a topological spaces and also specialized some of their basic properties with examples. Also, we discuss about properties and characterization of neutrosophic Z-irresolute maps.

PRELIMINARIES

In Paper [9], a neutrosophic set (briefly, $N_s s$) is defined & properties such as 0_N , I_N , $L \subseteq M$, L = M, $I_N - L$, $L \cup M \otimes L \cap M$. Also, a neutrosophic topological space (briefly, $N_s t s$), neutrosophic open sets (briefly, $N_s o s$), neutrosophic closed sets (briefly, $N_s c s$), neutrosophic interior of L (briefly, $N_s int(L)$) and neutrosophic closure of L (briefly, $N_s c l(L)$) are defined. In [1], neutrosophic regular (resp. pre) open set (briefly, $N_s ros$ (resp. $N_s Pos$)) and neutrosophic regular (resp. pre) closed set (briefly, $N_s ros$ (resp. $N_s Pos$)) are described. In [17], neutrosophic δ interior of S (briefly, S), neutrosophic S closure of S0 (briefly, S0 S0), neutrosophic S0-open set (briefly, S1 S2 S2 S3 and their respective closed sets. A neutrosophic S3-open set

open set (briefly, N_seos) [16], neutrosophic Z-open set (briefly, N_sZos) [8] and their respective closed sets. A neutrosophic (resp. $\delta, \delta S, \mathcal{P}\&e$) continuous (briefly, $N_s Cts$ [11] (resp. $N_s \delta Cts, N_s \delta SCts, N_s \mathcal{P}Cts$ [1] & $N_s eCts$ [18])) are also used in this paper.

NEUTROSOPHIC Z-CONTINUOUS MAPS

Definition 1: A map $h:(X,\tau_N)\to (Y,\sigma_N)$ is called neutrosophic Z-continuous $(N_sZ\ Cts\ in\ short)$ if $h^{-1}(\psi)$ is a $N_s Zos$ in (X, τ_N) for every $N_s os \psi$ in (Y, σ_N) .

Example 2: Let $X = \{l, m, n\} = Y$ and define $N_s s' s X_1, X_2 \& X_3$ in X and Y_1 in Y are

$$\begin{split} X_1 &= \langle X, \left(\frac{\mu_l}{0.2}, \frac{\mu_m}{0.3}, \frac{\mu_n}{0.4}\right), \left(\frac{\sigma_l}{0.5}, \frac{\sigma_m}{0.5}, \frac{\sigma_n}{0.5}\right), \left(\frac{v_l}{0.8}, \frac{v_m}{0.7}, \frac{v_n}{0.6}\right) \rangle, \\ X_2 &= \langle X, \left(\frac{\mu_l}{0.1}, \frac{\mu_m}{0.1}, \frac{\mu_n}{0.4}\right), \left(\frac{\sigma_l}{0.5}, \frac{\sigma_m}{0.5}, \frac{\sigma_n}{0.5}\right), \left(\frac{v_l}{0.9}, \frac{v_m}{0.9}, \frac{v_n}{0.6}\right) \rangle, \\ X_3 &= \langle X, \left(\frac{\mu_l}{0.2}, \frac{\mu_m}{0.4}, \frac{\mu_n}{0.4}\right), \left(\frac{\sigma_l}{0.5}, \frac{\sigma_m}{0.5}, \frac{\sigma_n}{0.5}\right), \left(\frac{v_l}{0.8}, \frac{v_m}{0.6}, \frac{v_n}{0.6}\right) \rangle, \\ Y_1 &= \langle Y, \left(\frac{\mu_l}{0.2}, \frac{\mu_m}{0.4}, \frac{\mu_n}{0.4}\right), \left(\frac{\sigma_l}{0.5}, \frac{\sigma_m}{0.5}, \frac{\sigma_n}{0.5}\right), \left(\frac{v_l}{0.8}, \frac{v_m}{0.6}, \frac{v_n}{0.6}\right) \rangle. \end{split}$$

Then we have $\tau_N = \{0_N, X_1, X_2, 1_N\}$ and $\sigma_N = \{0_N, Y_1, 1_N\}$. Let $h: (X, \tau_N) \to (Y, \sigma_N)$ be an identity mapping, then h is $N_s ZCts$ function.

Proposition 3: The statements are hold but the converse does not true.

- Every $N_s \delta C t s$ is a $N_s C t s$. (i)
- Every N_sCts is a $N_s\delta SCts$. (ii)
- Every N_sCts is a $N_s\mathcal{P}Cts$. (iii)
- (iv) Every $N_s \delta SCts$ is a $N_s ZCts$.
- Every $N_s \mathcal{P}Cts$ is a $N_s ZCts$. (v)
- (vi) Every $N_s ZCts$ is a $N_s eCts$.

Proof: The proof of (i), (ii) & (iii) are studied in [19] & [18].

- Let ψ be a \$N_s os in Y. Since h is $N_s \delta SCts$, $h^{-1}(\psi)$ is a $N_s \delta Sos$ in X. Since every $N_s \delta os$ is a $N_s Zos$ [16], $h^{-1}(\psi)$ is a $N_s Zos$ in X. Hence h is a $N_s ZCts$.
- Let ψ be a \$N_sos in Y. Since h is $N_s \mathcal{P}Cts$, $h^{-1}(\psi)$ is a $N_s \mathcal{P}os$ in X. Since every $N_s \mathcal{P}os$ is a $N_s \mathcal{P}os$ (v) [16], $h^{-1}(\psi)$ is a $N_s Zos$ in X. Hence h is a $N_s ZCts$.
- Let ψ be a N_s os in Y. Since h is N_s ZCts, $h^{-1}(\psi)$ is a N_s Zos in X. Since every N_s Zos is a N_s eos [16], (vi) $h^{-1}(\psi)$ is a $N_s eos$ in X. Hence h is a $N_s eCts$.

Example 4: Let $X = \{l, m, n\} = Y$ and define $N_s s' s X_1, X_2 \& X_3$ in X are

$$\begin{split} X_1 &= \langle X, \left(\frac{\mu_l}{0.2}, \frac{\mu_m}{0.3}, \frac{\mu_n}{0.4}\right), \left(\frac{\sigma_l}{0.5}, \frac{\sigma_m}{0.5}, \frac{\sigma_n}{0.5}\right), \left(\frac{\nu_l}{0.8}, \frac{\nu_m}{0.7}, \frac{\nu_n}{0.6}\right) \rangle, \\ X_2 &= \langle X, \left(\frac{\mu_l}{0.1}, \frac{\mu_m}{0.1}, \frac{\mu_n}{0.4}\right), \left(\frac{\sigma_l}{0.5}, \frac{\sigma_m}{0.5}, \frac{\sigma_n}{0.5}\right), \left(\frac{\nu_l}{0.9}, \frac{\nu_m}{0.9}, \frac{\nu_n}{0.6}\right) \rangle, \\ X_3 &= \langle Y, \left(\frac{\mu_l}{0.2}, \frac{\mu_m}{0.2}, \frac{\mu_n}{0.3}\right), \left(\frac{\sigma_l}{0.5}, \frac{\sigma_m}{0.5}, \frac{\sigma_n}{0.5}\right), \left(\frac{\nu_l}{0.8}, \frac{\nu_m}{0.8}, \frac{\nu_n}{0.7}\right) \rangle. \\ \text{Then we have } \tau_N &= \{0_N, X_1, X_2, 1_N\}. \text{ Let } h: (X, \tau_N) \to (X, \sigma_N) \text{ be an identity mapping, then } h \text{ is } N_s \mathcal{PC}ts \text{ but not } t \in \mathbb{R}^{N_s} \\$$

 N_sCts , the set $h^{-1}(X_3) = X_3$ is a $N_s\mathcal{P}os$ but not N_sos .

Example 5: In Example 2, h is $N_s \mathcal{Z}Cts$ but not $N_s \mathcal{P}Cts$, the set $h^{-1}(Y_1) = X_3$ is a $N_s \mathcal{Z}os$ but not $N_s \mathcal{P}os$.

Example 6: Let $X = \{l, m, n\} = Y$ and define $N_s s' s X_1, X_2 \& X_3$ in X and Y_1 in Y are

$$\begin{split} X_1 &= \langle X, \left(\frac{\mu_l}{0.2}, \frac{\mu_m}{0.3}, \frac{\mu_n}{0.4}\right), \left(\frac{\sigma_l}{0.5}, \frac{\sigma_m}{0.5}, \frac{\sigma_n}{0.5}\right), \left(\frac{\nu_l}{0.8}, \frac{\nu_m}{0.7}, \frac{\nu_n}{0.6}\right) \rangle, \\ X_2 &= \langle X, \left(\frac{\mu_l}{0.1}, \frac{\mu_m}{0.1}, \frac{\mu_n}{0.4}\right), \left(\frac{\sigma_l}{0.5}, \frac{\sigma_m}{0.5}, \frac{\sigma_n}{0.5}\right), \left(\frac{\nu_l}{0.9}, \frac{\nu_m}{0.9}, \frac{\nu_n}{0.6}\right) \rangle, \\ X_3 &= \langle X, \left(\frac{\mu_l}{0.8}, \frac{\mu_m}{0.7}, \frac{\mu_n}{0.8}\right), \left(\frac{\sigma_l}{0.5}, \frac{\sigma_m}{0.5}, \frac{\sigma_n}{0.5}\right), \left(\frac{\nu_l}{0.2}, \frac{\nu_m}{0.3}, \frac{\nu_n}{0.2}\right) \rangle, \\ Y_1 &= \langle Y, \left(\frac{\mu_l}{0.8}, \frac{\mu_m}{0.7}, \frac{\mu_n}{0.8}\right), \left(\frac{\sigma_l}{0.5}, \frac{\sigma_m}{0.5}, \frac{\sigma_n}{0.5}\right), \left(\frac{\nu_l}{0.2}, \frac{\nu_m}{0.3}, \frac{\nu_n}{0.2}\right) \rangle. \end{split}$$

Then we have $\tau_N = \{0_N, X_1, X_2, 1_N\}$ and $\sigma_N = \{0_N, Y_1, 1_N\}$. Let $h: (X, \tau_N) \to (Y, \sigma_N)$ be an identity mapping, then h is $N_s eCts$ but not $N_s ZCts$, the set $h^{-1}(Y_1) = X_3$ is a $N_s eos$ but not $N_s Zos$.

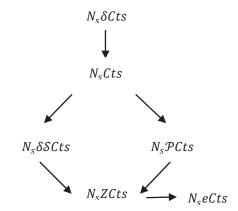
Example 7: Let $X = \{l, m, n\} = Y$ and define $N_s s' s X_1, X_2 \& X_3$ in X and Y_1 in Y are

$$\begin{split} X_1 &= \langle X, \left(\frac{\mu_l}{0.4}, \frac{\mu_m}{0.6}, \frac{\mu_n}{0.5}\right), \left(\frac{\sigma_l}{0.5}, \frac{\sigma_m}{0.5}, \frac{\sigma_n}{0.5}\right), \left(\frac{\nu_l}{0.6}, \frac{\nu_m}{0.4}, \frac{\nu_n}{0.5}\right) \rangle, \\ X_2 &= \langle X, \left(\frac{\mu_l}{0.6}, \frac{\mu_m}{0.4}, \frac{\mu_n}{0.4}\right), \left(\frac{\sigma_l}{0.5}, \frac{\sigma_m}{0.5}, \frac{\sigma_n}{0.5}\right), \left(\frac{\nu_l}{0.4}, \frac{\nu_m}{0.6}, \frac{\nu_n}{0.6}\right) \rangle, \end{split}$$

$$\begin{split} X_{3} &= \langle X, \left(\frac{\mu_{l}}{0.4}, \frac{\mu_{m}}{0.5}, \frac{\mu_{n}}{0.5}\right), \left(\frac{\sigma_{l}}{0.5}, \frac{\sigma_{m}}{0.5}, \frac{\sigma_{n}}{0.5}\right), \left(\frac{\nu_{l}}{0.6}, \frac{\nu_{m}}{0.5}, \frac{\nu_{n}}{0.5}\right) \rangle, \\ Y_{1} &= \langle Y, \left(\frac{\mu_{l}}{0.4}, \frac{\mu_{m}}{0.5}, \frac{\mu_{n}}{0.5}\right), \left(\frac{\sigma_{l}}{0.5}, \frac{\sigma_{m}}{0.5}, \frac{\sigma_{n}}{0.5}\right), \left(\frac{\nu_{l}}{0.6}, \frac{\nu_{m}}{0.5}, \frac{\nu_{n}}{0.5}\right) \rangle. \end{split}$$

$$\begin{split} X_3 &= \langle X, \left(\frac{\mu_l}{0.4}, \frac{\mu_m}{0.5}, \frac{\mu_n}{0.5}\right), \left(\frac{\sigma_l}{0.5}, \frac{\sigma_m}{0.5}, \frac{\sigma_n}{0.5}\right), \left(\frac{\nu_l}{0.6}, \frac{\nu_m}{0.5}, \frac{\nu_n}{0.5}\right) \rangle, \\ Y_1 &= \langle Y, \left(\frac{\mu_l}{0.4}, \frac{\mu_m}{0.5}, \frac{\mu_n}{0.5}\right), \left(\frac{\sigma_l}{0.5}, \frac{\sigma_m}{0.5}, \frac{\sigma_n}{0.5}\right), \left(\frac{\nu_l}{0.6}, \frac{\nu_m}{0.5}, \frac{\nu_n}{0.5}\right) \rangle. \\ &\quad \text{Then we have } \tau_N = \{0_N, X_1, X_2, X_1 \cup X_2, X_1 \cap X_2, 1_N\} \text{ and } \sigma_N = \{0_N, Y_1, 1_N\}. \text{ Let } h: (X, \tau_N) \to (Y, \sigma_N) \text{ be an identity mapping, then } h \text{ is } N_S ZCts \text{ but not } N_S \delta SCts, \text{ the set } h^{-1}(Y_1) = X_3 \text{ is a } N_S Zos \text{ but not } N_S \delta Sos. \text{ The other is } N_S ZOs \text{ but not } N_S \delta Sos. \text{ The other is }$$
implications are shown in [17].

Remark 8: We obtain the following diagram from the results we discussed above.



Theorem 9: A map $h: (X, \tau_N) \to (Y, \sigma_N)$ is $N_s ZCts$ iff the inverse image of each $N_s cs$ in Y is $N_s Zcs$ in X. **Proof:** Let ψ be a $N_s cs$ in Y. This implies ψ^c is $N_s os$ in Y. Since h is $N_s Z cts$, $h^{-1}(\psi^c)$ is $N_s Z os$ in X. Since $h^{-1}(\psi^c) = (h^{-1}(\psi))^c$, $h^{-1}(\psi)$ is a $N_s Z c s$ in X.

Conversely, let ψ be a $N_s cs$ in Y. Then ψ^c is a $N_s os$ in Y. By hypothesis $h^{-1}(\psi^c)$ is $N_s Z os$ in X. Since $h^{-1}(\psi^c) = (h^{-1}(\psi))^c$, $(h^{-1}(\psi))^c$ is a $N_s Zos$ in X. Therefore $h^{-1}(\psi)$ is a $N_s Zcs$ in X. Hence h is $N_s Zcts$.

Theorem 10: Let $h: (X, \tau_N) \to (Y, \sigma_N)$ be a $N_s ZCts$ where every $N_s Zos$ in X is a $N_s os$ in X, then h is a $N_s Cts$.

Proof: Let ψ be a $N_s os$ in Y. Then $h^{-1}(\psi)$ is a $N_s Zos$ in X. By hypothesis, $h^{-1}(\psi)$ is a $N_s os$ in X. Hence h is a N_sZCts .

Theorem 11: Let $h:(X,\tau_N)\to (Y,\sigma_N)$ be a N_sZCts map and $g:(Y,\sigma_N)\to (Z,\rho_N)$ be an N_sCts , then $g \circ h: (X, \tau_N) \to (Z, \rho_N)$ is a $N_s ZCts$ map.

Proof: Let ψ be a $N_s os$ in Z. Then $g^{-1}(\psi)$ is a $N_s Z os$ in Y, by hypothesis. Since h is a $N_s Z Cts$ maps, $h^{-1}(g^{-1}(\psi))$ is a $N_s Zos$ in X. Hence $g \circ h$ is a $N_s ZCts$ map.

Theorem 12: Let $h: (X, \tau_N) \to (Y, \sigma_N)$ be a $N_s ZCts$ map. Then the following conditions are hold.

- $h(N_s Z cl(\psi)) \subseteq N_s cl(h(\psi))$, for all $N_s \psi$ in X.
- $N_s Zcl(h^{-1}(\mu)) \subseteq h^{-1}(N_s cl(\mu))$, for all $N_s s$ in Y. (ii)

Proof: (i) Since $N_s cl(h(\psi))$ is a $N_s cs$ in Y and h is $N_s Z Cts$, then $h^{-1} N_s cl(h(\psi))$ is $N_s Zc$ in X. That is, $N_s Zcl(\psi) \subseteq$ $h^{-1}N_scl(h(\psi))$. Therefore, $h(N_sZcl(\psi)) \subseteq N_scl(h(\psi))$.

(ii) By replacing ψ by $h^{-1}(\mu)$ in (i), we obtain $h(N_s Zcl(h^{-1}(\mu))) \subseteq N_s cl(h(h^{-1}(\mu))) \subseteq N_s cl(\mu)$. Hence, $N_s Zcl(h^{-1}(\mu)) \subseteq h^{-1}(N_s cl(\mu))$, for every neutrosophic set μ in Y.

Remark 13: If h is $N_s ZCts$, then

- (i) $h(N_s Zcl(\psi))$ is not necessarily equal to $N_s cl(h(\psi))$ where $\psi \in X$.
- $N_s Zcl(h^{-1}(\mu))$ is not necessarily equal to $h^{-1}(N_s cl(\mu))$ where $\mu \in Y$. (ii)

Example 14: In Example 2, h is a N_sZCts .

(i) Let
$$\psi = \langle \left(\left(\frac{\mu_a}{0.2}, \frac{\mu_b}{0.4}, \frac{\mu_c}{0.4} \right), \left(\frac{\sigma_a}{0.5}, \frac{\sigma_b}{0.5}, \frac{\sigma_c}{0.5} \right), \left(\frac{\nu_a}{0.8}, \frac{\nu_b}{0.6}, \frac{\nu_c}{0.6} \right) \rangle \rangle$$
. Then
$$h(N_s Zcl(\psi)) = f(N_s Zcl(\langle \left(\frac{\mu_a}{0.2}, \frac{\mu_b}{0.4}, \frac{\mu_c}{0.4} \right), \left(\frac{\sigma_a}{0.5}, \frac{\sigma_b}{0.5}, \frac{\sigma_c}{0.5} \right), \left(\frac{\nu_a}{0.8}, \frac{\nu_b}{0.6}, \frac{\nu_c}{0.6} \right) \rangle)$$
$$= f\left(\langle \left(\frac{\mu_a}{0.2}, \frac{\mu_b}{0.4}, \frac{\mu_c}{0.4} \right), \left(\frac{\sigma_a}{0.5}, \frac{\sigma_b}{0.5}, \frac{\sigma_c}{0.5} \right), \left(\frac{\nu_a}{0.8}, \frac{\nu_b}{0.6}, \frac{\nu_c}{0.6} \right) \rangle \right)$$
$$= \langle \left(\frac{\mu_a}{0.2}, \frac{\mu_b}{0.4}, \frac{\mu_c}{0.4} \right), \left(\frac{\sigma_a}{0.5}, \frac{\sigma_b}{0.5}, \frac{\sigma_c}{0.5} \right), \left(\frac{\nu_a}{0.8}, \frac{\nu_b}{0.6}, \frac{\nu_c}{0.6} \right) \rangle \rangle.$$
But

$$N_s cl\left(h(\psi)\right) = N_s cl\left(h\left(\langle \left(\frac{\mu_a}{0.2}, \frac{\mu_b}{0.4}, \frac{\mu_c}{0.4}\right), \left(\frac{\sigma_a}{0.5}, \frac{\sigma_b}{0.5}, \frac{\sigma_c}{0.5}\right), \left(\frac{\nu_a}{0.8}, \frac{\nu_b}{0.6}, \frac{\nu_c}{0.6}\right)\rangle\right)\right)$$

$$\begin{split} &=N_scl\left(\langle\left(\frac{\mu_a}{0.2},\frac{\mu_b}{0.4},\frac{\mu_c}{0.4}\right),\left(\frac{\sigma_a}{0.5},\frac{\sigma_b}{0.5},\frac{\sigma_c}{0.5}\right),\left(\frac{\nu_a}{0.8},\frac{\nu_b}{0.6},\frac{\nu_c}{0.6}\right)\rangle\right)\\ &=\langle\left(\frac{\mu_a}{0.8},\frac{\mu_b}{0.7},\frac{\mu_c}{0.6}\right),\left(\frac{\sigma_a}{0.5},\frac{\sigma_b}{0.5},\frac{\sigma_c}{0.5}\right),\left(\frac{\nu_a}{0.2},\frac{\nu_b}{0.3},\frac{\nu_c}{0.4}\right)\rangle.\\ &\text{Thus }h\big(N_sZcl(\psi)\big)\neq N_scl\big(h(\psi)\big). \end{split}$$

(ii) Let
$$\eta = \langle \left(\frac{\mu_a}{0.2}, \frac{\mu_b}{0.4}, \frac{\mu_c}{0.4}\right), \left(\frac{\sigma_a}{0.5}, \frac{\sigma_b}{0.5}, \frac{\sigma_c}{0.5}\right), \left(\frac{\nu_a}{0.8}, \frac{\nu_b}{0.6}, \frac{\nu_c}{0.6}\right) \rangle$$
.

Then

$$N_s Z c l(h^{-1}(\eta)) \leq N_s Z c l(h^{-1}\left(\langle \left(\frac{\mu_a}{0.2}, \frac{\mu_b}{0.4}, \frac{\mu_c}{0.4}\right), \left(\frac{\sigma_a}{0.5}, \frac{\sigma_b}{0.5}, \frac{\sigma_c}{0.5}\right), \left(\frac{\nu_a}{0.8}, \frac{\nu_b}{0.6}, \frac{\nu_c}{0.6}\right) \rangle \right))$$

$$= N_s Z c l\left(\langle \left(\frac{\mu_a}{0.2}, \frac{\mu_b}{0.4}, \frac{\mu_c}{0.4}\right), \left(\frac{\sigma_a}{0.5}, \frac{\sigma_b}{0.5}, \frac{\sigma_c}{0.5}\right), \left(\frac{\nu_a}{0.8}, \frac{\nu_b}{0.6}, \frac{\nu_c}{0.6}\right) \rangle \right)$$

$$= \langle \left(\frac{\mu_a}{0.2}, \frac{\mu_b}{0.4}, \frac{\mu_c}{0.4}\right), \left(\frac{\sigma_a}{0.5}, \frac{\sigma_b}{0.5}, \frac{\sigma_c}{0.5}\right), \left(\frac{\nu_a}{0.8}, \frac{\nu_b}{0.6}, \frac{\nu_c}{0.6}\right) \rangle \right)$$
But

$$h^{-1}(N_s c l(\eta)) = h^{-1}\left(N_s c l\left(\langle \left(\frac{\mu_a}{0.2}, \frac{\mu_b}{0.4}, \frac{\mu_c}{0.4}\right), \left(\frac{\sigma_a}{0.5}, \frac{\sigma_b}{0.5}, \frac{\sigma_c}{0.5}\right), \left(\frac{\nu_a}{0.2}, \frac{\nu_b}{0.3}, \frac{\nu_b}{0.6}, \frac{\nu_c}{0.6}\right) \rangle \right) \rangle$$

$$= h^{-1}\left(\langle \left(\frac{\mu_a}{0.8}, \frac{\mu_b}{0.7}, \frac{\mu_c}{0.6}\right), \left(\frac{\sigma_a}{0.5}, \frac{\sigma_b}{0.5}, \frac{\sigma_c}{0.5}\right), \left(\frac{\nu_a}{0.2}, \frac{\nu_b}{0.3}, \frac{\nu_c}{0.4}\right) \rangle \right)$$

$$= \langle \left(\frac{\mu_a}{0.8}, \frac{\mu_b}{0.7}, \frac{\mu_c}{0.6}\right), \left(\frac{\sigma_a}{0.5}, \frac{\sigma_b}{0.5}, \frac{\sigma_c}{0.5}\right), \left(\frac{\nu_a}{0.2}, \frac{\nu_b}{0.3}, \frac{\nu_c}{0.4}\right) \rangle \right)$$
Thus $N_s Z c l(h^{-1}(\eta)) \neq h^{-1}(N_s c l(\eta))$.

Theorem 15: If h is $N_s ZCts$, then $h^{-1}(N_s int(\mu)) \leq N_s Z int(h^{-1}(\mu))$, for all $N_s s \mu$ in Y.

Proof: If h is $N_s ZCts$ and $\mu \in \sigma_N$. N_s int(μ) is $N_s o$ in Y and hence, $h^{-1}(N_s int(\mu))$ is $N_s Zo$ in X. Therefore $N_s \operatorname{int}\left(h^{-1}(N_s Z \operatorname{int}(\mu))\right) = h^{-1}(N_s \operatorname{int}(\mu)).$ Also, $N_s \operatorname{int}(\mu) \leq \mu$, implies that $h^{-1}(N_s \operatorname{int}(\mu)) \leq h^{-1}(\mu).$

Therefore $N_s Zint(h^{-1}(N_sint(\mu))) \leq N_s Zint(h^{-1}(\mu))$. That is $h^{-1}(N_sint(\mu)) \leq N_s Zint(h^{-1}(\mu))$.

Conversely, let $h^{-1}(N_sint(\mu)) \leq N_sZint(h^{-1}(\mu))$ for all subset μ of Y. If μ is N_so in Y, then N_s $int(\mu) = \mu$. By assumption, $h^{-1}(N_S int(\mu)) \leq N_S Zint(h^{-1}(\mu))$. Thus $h^{-1}(\mu) \leq N_S Zint(h^{-1}(\mu))$. But $N_S Zint(h^{-1}(\mu)) \leq h^{-1}(\mu)$. Therefore $N_s Zint(h^{-1}(\mu)) = h^{-1}(\mu)$. That is, $h^{-1}(\mu)$ is $N_s Zo$ in X, for all $N_s os \mu$ in Y. Therefore h is $N_s ZCts$ on X. **Remark 16:** If h is $N_s ZCts$, then $N_s Zint(h^{-1}(\mu))$ is not necessarily equal to $h^{-1}(N_s int(\mu))$ where $\mu \in Y$.

Example 17: In Example 2,
$$h$$
 is a $N_s ZCts$, then $N_s Ztot(h^{-1}(\mu))$ is not necessarily equal to $h^{-1}(N_s Int(\mu))$ where μ **Example 17:** In Example 2, h is a $N_s ZCts$. Let $\eta = \langle \left(\frac{\mu_a}{0.2}, \frac{\mu_b}{0.4}, \frac{\mu_c}{0.4}\right), \left(\frac{\sigma_a}{0.5}, \frac{\sigma_b}{0.5}, \frac{\sigma_c}{0.5}\right), \left(\frac{\nu_a}{0.8}, \frac{\nu_b}{0.6}, \frac{\nu_c}{0.6}\right) \rangle$. Then $N_s Zint(h^{-1}(\eta)) \leq N_s Zint\left(h^{-1}\left(\langle \left(\frac{\mu_a}{0.2}, \frac{\mu_b}{0.4}, \frac{\mu_c}{0.4}\right), \left(\frac{\sigma_a}{0.5}, \frac{\sigma_b}{0.5}, \frac{\sigma_c}{0.5}\right), \left(\frac{\nu_a}{0.8}, \frac{\nu_b}{0.6}, \frac{\nu_c}{0.6}\right) \rangle\right)$

$$= N_s Zint\left(\langle \left(\frac{\mu_a}{0.2}, \frac{\mu_b}{0.4}, \frac{\mu_c}{0.4}\right), \left(\frac{\sigma_a}{0.5}, \frac{\sigma_b}{0.5}, \frac{\sigma_c}{0.5}\right), \left(\frac{\nu_a}{0.8}, \frac{\nu_b}{0.6}, \frac{\nu_c}{0.6}\right) \rangle\right)$$

$$= \langle \left(\frac{\mu_a}{0.2}, \frac{\mu_b}{0.4}, \frac{\mu_c}{0.4}\right), \left(\frac{\sigma_a}{0.5}, \frac{\sigma_b}{0.5}, \frac{\sigma_c}{0.5}\right), \left(\frac{\nu_a}{0.8}, \frac{\nu_b}{0.6}, \frac{\nu_c}{0.6}\right) \rangle$$

But

$$\begin{split} h^{-1}\big(N_{s}int(\eta)\big) &= h^{-1}\big(N_{s}int\left(\langle\left(\frac{\mu_{a}}{0.2},\frac{\mu_{b}}{0.4},\frac{\mu_{c}}{0.4}\right),\left(\frac{\sigma_{a}}{0.5},\frac{\sigma_{b}}{0.5},\frac{\sigma_{c}}{0.5}\right),\left(\frac{\nu_{a}}{0.8},\frac{\nu_{b}}{0.6},\frac{\nu_{c}}{0.6}\right)\rangle\right)) \\ &= h^{-1}\left(\langle\left(\frac{\mu_{a}}{0.2},\frac{\mu_{b}}{0.4},\frac{\mu_{c}}{0.4}\right),\left(\frac{\sigma_{a}}{0.5},\frac{\sigma_{b}}{0.5},\frac{\sigma_{c}}{0.5}\right),\left(\frac{\nu_{a}}{0.8},\frac{\nu_{b}}{0.6},\frac{\nu_{c}}{0.6}\right)\rangle\right) \\ &= \langle\left(\frac{\mu_{a}}{0.1},\frac{\mu_{c}}{0.1},\frac{\mu_{c}}{0.4}\right),\left(\frac{\sigma_{a}}{0.5},\frac{\sigma_{b}}{0.5},\frac{\sigma_{c}}{0.5}\right),\left(\frac{\nu_{a}}{0.9},\frac{\nu_{b}}{0.9},\frac{\nu_{c}}{0.6}\right)\rangle. \end{split}$$
Thus $N_{s}Zint(h^{-1}(\eta)) \neq h^{-1}(N_{s}int(\eta)).$

NEUTROSOPHIC Z-IRRESOLUTE MAPS

Definition 18: A map $h: (X, \tau_N) \to (Y, \sigma_N)$ is called neutrosophic Z-irresolute (briefly, $N_s ZIrr$) map if $h^{-1}(\psi)$ is a $N_s Zos$ in (X, τ_N) for every $N_s Zos \psi$ in (Y, σ_N) .

Theorem 19: Let $h: (X, \tau_N) \to (Y, \sigma_N)$ be a $N_s ZIrr$ then h is a $N_s ZCts$ map. But not conversely.

Proof: Let h be a $N_s Z Irr$ map. Let ψ be any N_s os in Y. Since every N_s os is a $N_s Zos$, ψ is a $N_s Zos$ in Y. By hypothesis $h^{-1}(\psi)$ is a N_s Zos in Y. Hence h is a N_s ZCts map.

Example 20: Let $X = \{a, b, c\} = Y$ and define $N_s s' s X_1, X_2 \& X_3$ in X and $Y_1 \& Y_2$ in Y are

$$X_{1} = \langle X, \left(\frac{\mu_{a}}{0.2}, \frac{\mu_{b}}{0.3}, \frac{\mu_{c}}{0.4}\right), \left(\frac{\sigma_{a}}{0.5}, \frac{\sigma_{b}}{0.5}, \frac{\sigma_{c}}{0.5}\right), \left(\frac{\nu_{a}}{0.8}, \frac{\nu_{b}}{0.7}, \frac{\nu_{c}}{0.6}\right) \rangle,$$

$$X_{2} = \langle X, \left(\frac{\mu_{a}}{0.1}, \frac{\mu_{b}}{0.1}, \frac{\mu_{c}}{0.4}\right), \left(\frac{\sigma_{a}}{0.5}, \frac{\sigma_{b}}{0.5}, \frac{\sigma_{c}}{0.5}\right), \left(\frac{\nu_{a}}{0.9}, \frac{\nu_{b}}{0.9}, \frac{\nu_{c}}{0.6}\right) \rangle,$$

$$X_{3} = \langle X, \left(\frac{\mu_{a}}{0.4}, \frac{\mu_{b}}{0.4}, \frac{\mu_{c}}{0.4}\right), \left(\frac{\sigma_{a}}{0.5}, \frac{\sigma_{b}}{0.5}, \frac{\sigma_{c}}{0.5}\right), \left(\frac{\nu_{a}}{0.8}, \frac{\nu_{b}}{0.6}, \frac{\nu_{c}}{0.6}\right) \rangle,$$

$$Y_{1} = \langle Y, \left(\frac{\mu_{a}}{0.1}, \frac{\mu_{b}}{0.1}, \frac{\mu_{c}}{0.4}\right), \left(\frac{\sigma_{a}}{0.5}, \frac{\sigma_{b}}{0.5}, \frac{\sigma_{c}}{0.5}\right), \left(\frac{\nu_{a}}{0.9}, \frac{\nu_{b}}{0.9}, \frac{\nu_{c}}{0.6}\right) \rangle,$$

$$Y_{2} = \langle Y, \left(\frac{\mu_{a}}{0.1}, \frac{\mu_{b}}{0.4}, \frac{\mu_{c}}{0.5}\right), \left(\frac{\sigma_{a}}{0.5}, \frac{\sigma_{b}}{0.5}, \frac{\sigma_{c}}{0.5}\right), \left(\frac{\nu_{a}}{0.9}, \frac{\nu_{b}}{0.6}, \frac{\nu_{c}}{0.5}\right) \rangle,$$

$$Then we have $\tau_{N} = \{0_{N}, X_{1}, X_{2}, 1_{N}\} \text{ and } \sigma_{N} = \{0_{N}, Y_{1}, 1_{N}\}. \text{ Let } h: (X, \tau_{N}) \rightarrow (Y, \sigma_{N}) \text{ be an identity mapping,}$
then h is $N_{s}ZCts$ but not $N_{s}ZIrr$, the set Y_{2} is a $N_{s}Zos$ in Y but $h^{-1}(Y_{2})$ is not $N_{s}Zos$ in X .

Theorem 21: Let $h: (X, \tau_{N}) \rightarrow (Y, \sigma_{N})$ be a $N_{s}ZIrr$ where every $N_{s}Zos$ in X is a $N_{s}Os$ in X then h is a $N_{s}Irr$$$

Theorem 21: Let $h:(X,\tau_N)\to (Y,\sigma_N)$ be a N_s ZIrr where every N_s Zos in X is a N_s os in X, then h is a N_s Irr

Proof: Let ψ be a N_s os in Y. Then ψ is a N_s Zos in Y. Therefore $h^{-1}(\psi)$ is a N_s Zos in X. By hypothesis $h^{-1}(\psi)$ is a N_s os in X. Hence h is a N_s Irr map.

Theorem 22: Let $h:(X,\tau_N)\to (Y,\sigma_N)$ and $g:(Y,\sigma_N)\to (Z,\rho_N)$ be a N_s ZIrr maps, then $g\circ h:(X,\tau_N)\to (X,\tau_N)$ (Z, ρ_N) is a N_s ZIrr map.

Proof: Let ψ be a N_s Zos in Z. Then $g^{-1}(\psi)$ is a N_s Zos in Y. Since h is a N_s ZIrr map, $h^{-1}(g^{-1}(\psi))$ is a N_s Zos in X. Hence $g \circ h$ is a N_s ZIrr map.

Theorem 23: Let $h: (X, \tau_N) \to (Y, \sigma_N)$ be $N_s ZIrr$ map and $g: (Y, \sigma_N) \to (Z, \rho_N)$ be a $N_s ZCts$ map, then $g \circ h:$ $(X, \tau_N) \rightarrow (Z, \rho_N)$ is a N_s ZCts map.

X. Hence $g \circ h$ is a N_s *ZCts* map.

Theorem 24: Let $h: (X, \tau_N) \to (Y, \sigma_N)$ be a map from a $N_S tX$ into a $N_S tY$ where every $N_S Zos$ in X is a $N_S os$ in both X & Y. Then the following conditions are equivalent:

- h is a N_c ZIrr map. (i)
- $h^{-1}(\mu)$ is a N_s Zos in X for each N_s Zos μ in Y. (ii)
- $N_s cl(h^{-1}(\mu)) \subseteq h^{-1}(N_s cl(\mu))$ for each $N_s s \mu$ of Y.

Proof: (i) \rightarrow (ii): Let μ be any N_s Zos in Y. Then μ^c is a N_s Zcs in Y. Since h is N_s Zlrr, $h^{-1}(\mu^c)$ is a N_s Zcs in X. But $h^{-1}(\mu^c) = (h^{-1}(\mu))^c$. Therefore $h^{-1}(\mu)$ is a $N_s Zos$ in X.

(ii) \rightarrow (iii): Let μ be any N_s s in Y and $\mu \leq N_s$ $cl(\mu)$. Then $h^{-1}(\mu) \leq h^{-1}(N_s$ $cl(\mu))$. Since N_s $cl(\mu)$ is a N_s cs in Y, $N_s cl(\mu)$ is a $N_s Zcs$ in Y. Therefore $(N_s cl(\mu))^c$ is a $N_s Zcs$ in Y. By hypothesis, $h^{-1}((N_s cl(\mu)))^c$ is a $N_s Zcs$ in X. Since $h^{-1}((N_s cl(\mu))^c) = (h^{-1}(N_s cl(\mu)))^c$, $h^{-1}(N_s cl(\mu))$ is a $N_s Zcs$ in X. By hypothesis, $h^{-1}(N_s cl(\mu))$ is a $N_s cs \text{ in } X. \text{ Hence } N_s cl(h^{-1}(\mu)) \subseteq N_s cl(h^{-1}(N_s cl(\mu))) = h^{-1}(N_s cl(\mu)). \text{ That is } N_s cl(h^{-1}(\mu)) \subseteq h^{-1}(N_s cl(\mu)).$ (iii) \rightarrow (i): Let μ be any $N_s Z c s$ in Y. By hypothesis, μ is a $N_s c s$ in Y and $N_s c l(\mu) = \mu$. Hence $h^{-1}(\mu) = \mu$ $h^{-1}(N_s Zcl(\mu)) \supseteq N_s Zcl(h^{-1}(\mu))$. But clearly $h^{-1}(\mu) \subseteq N_s cl(h^{-1}(\mu))$. Therefore $N_s cl(h^{-1}(\mu)) = h^{-1}(\mu)$. This implies $h^{-1}(\mu)$ is a N_s cs and hence it is a N_s Zcs in X. Thus h is a N_s ZIrr map.

REFERENCES

- I. Arokiarani, R. Dhavaseelan, S. Jafari and M. Parimala, On some new notions and functions in neutrosophic topological spaces, Neutrosophic Sets and Systems, 16 (2017), 16-19.
- K. Atanassov and S. Stoeva, Intuitionistic fuzzy sets, in : polish syrup. on interval and fuzzy mathematics, 2. Poznan, (1983), 23-26.
- K. Atanassov, *Intuitionistic fuzzy sets*, Fuzzy Sets and Systems, 20 (1986), 87-96.
- K. Atanassov, Review and new results on intuitionistic fuzzy sets, Preprint IM-MFAIS, Sofia, (1988), 1-88.
- V. Chandrasekar, D. Sobana and A. Vadivel, On Fuzzy e-open Sets, fuzzy e-continuity and fuzzy e-compactness in intuitionistic fuzzy topological spaces, Sahand Communications in Mathematical Analysis (SCMA), 12(1) (2018), 131-153.
- C. L. Chang, Fuzzy topological space, J. Math. Anal. Appl., 24 (1968),182-190.
- Erdal Ekici, On e-open sets, \mathcal{DP}^* -sets and \mathcal{DP} ϵ^* -sets and decomposition of continuity, The Arabian Journal for Science and Engineering, 33 (2A) (2008), 269-282.
- N. Moogambigai, A. Vadivel and S. Tamilselvan, Z-open sets in a Neutrosophic Topological Spaces, Turkish Journal of Computer and Mathematics Education, 12(1S) (2021), 357-362.

- 9. A. A. Salama and S. A. Alblowi, *Neutrosophic Set and Neutrosophic Topological Spaces*, IOSR Journal of Mathematics, **3(4)** (2012), 31-35.
- 10. A. A. Salama, F. Smarandache and S. A. Alblowi, *Characteristic function of neutrosophic set*, Neutrosophic Sets and Systems, **3** (2014), 14-17.
- 11. A. A. Salama, F. Smarandache and V. Kromov, *Neutrosophic closed set and neutrosophic continuous functions*, Neutrosophic Sets and Systems, 4 (2014), 4-8.
- 12. A. A. Salama, *Basic structure of some classes of neutrosophic crisp nearly open sets and Possible application to GIS topology*, Neutrosophic Sets and Systems, 7 (2015), 18-22.
- 13. V. Seenivasan and K. Kamala, *Fuzzy e-continuity and fuzzy e-open sets*, Annals of Fuzzy Mathematics and Informatics, **8** (2014), 141-148.
- 14. F. Smaradache, *Neutrosophic set: A generalization of the intuitionistic fuzzy sets*, Inter. J. Pure Appl. Math., **24** (2005), 287-297.
- 15. Supriti Saha, Fuzzy δ-continuous mappings, Journal of Mathematical Analysis and Applications, 126 (1987), 130-142.
- A. Vadivel, C. John Sundar and P. Thangaraja, Neutrosophic e-open sets in a neutrosophic topological spaces, Submitted.
- 17. A. Vadivel, M. Seenivasan and C. John Sundar, *An introduction to \$\delta\$-open sets in a neutrosophic topological spaces*, Journal of Physics: Conference Series, **1724** (2021), 012011.
- 18. A. Vadivel, P. Thangaraja and C. John Sundar, *Neutrosophic e-continuous maps and neutrosophic e-irresolute maps*, Turkish Journal of Computer and Mathematics Education, **12(18)** (2021), 369-375.
- 19. V. Venkateswara Rao and Y. Srinivasa Rao, *Neutrosophic pre-open sets and pre-closed sets in Neutrosophic topology*, International Journal of Chem. Tech Research, **10(10)** (2017), 449-458.
- 20. L. A. Zadeh, Fuzzy sets, Information and control, 8 (1965), 338-353.