Neutrosophic positive implicative AAA-ideals in KU-algebras

Cite as: AIP Conference Proceedings 2364, 020015 (2021); https://doi.org/10.1063/5.0062904 Published Online: 23 September 2021

M. Vasu and D. Ramesh Kumar

ARTICLES YOU MAY BE INTERESTED IN

(T, S)-intuitionistic multi fuzzy subfield of a field

AIP Conference Proceedings 2177, 020102 (2019); https://doi.org/10.1063/1.5135277

Neutrosophic e-open maps, neutrosophic e-closed maps and neutrosophic ehomeomorphisms in neutrosophic topological spaces

AIP Conference Proceedings 2364, 020016 (2021); https://doi.org/10.1063/5.0062880

Neutrosophic Positive Implicative N-Ideals in KU-Algebras

M. Vasu^{1,a)} and D. Ramesh Kumar^{2,b)}

¹Department of Mathematics, Government Arts College for Women, Sivagangai - 630 562, Tamil Nadu, India. ²Department of Mathematics, Government Arts and Science College, Komarapalayam - 638 183, Tamil Nadu, India.

> a) Corresponding author: mvasu1974@gmail.com b) Electronic mail: durairameshmath@gmail.com

Abstract. The notion of a neutrosophic positive implicative \mathcal{N} -ideal in KU-algebras is introduced, and several properties are investigated. Relations between a neutrosophic \mathcal{N} -ideal and a neutrosophic positive implicative \mathcal{N} -ideal are discussed. Characterizations of a neutrosophic positive implicative \mathcal{N} -ideal are considered. Conditions for a neutrosophic \mathcal{N} -ideal to be a neutrosophic positive implicative \mathcal{N} -ideal are provided. An extension property of a neutrosophic positive implicative \mathcal{N} -ideal based on the negative indeterminacy membership function is discussed.

Keywords and phrases: neutrosophic \mathcal{N} -structure, neutrosophic \mathcal{N} -ideal, neutrosophic positive implicative \mathcal{N} -ideal. AMS (2000) subject classification: 06F35, 03G25, 03B52.

Introduction

Prabpayak and Leerawat [7, 8] introduced a algebraic structure called KU-algebras. They studied ideals and congruences in KU-algebras. Additionally, they introduced the concept of homomorphism of KU-algebra and examined some related properties. In 2017 Mostafa et al. [5] introduced positive implicative ideals in KU-algebras. Jun et al. [2] introduced a new function, called a negative-valued function, and constructed N-structures. Zadeh [11] introduced the degree of membership/truth (t) in 1965 and defined the fuzzy set. As a generalization of fuzzy sets, Atanassov [1] introduced the degree of nonmembership/falsehood (f) in 1986 and defined the intuitionistic fuzzy set. Smarandache introduced the degree of indeterminacy/neutrality as an independent component in 1995 [9, 10] and defined the neutrosophic set on three components (t, i, f) = (truth, indeterminacy, falsehood).

In this paper, we introduce the notion of a neutrosophic positive implicative \mathcal{N} -ideal in KU-algebras, and investigate several properties. We discuss relations between a neutrosophic \mathcal{N} -ideal and a neutrosophic positive implicative \mathcal{N} -ideal, and provide conditions for a neutrosophic \mathcal{N} -ideal to be a neutrosophic positive implicative \mathcal{N} -ideal. We consider characterizations of a neutrosophic positive implicative \mathcal{N} -ideal. We establish an extension property of a neutrosophic positive implicative \mathcal{N} -ideals based on the negative interminacy membership function.

Preliminaries

We let $K(\tau)$ be the class of all algebras with type $\tau = (2,0)$. A KU-algebra [7, 8] on a system $P = (P,*,0) \in K(\tau)$ satisfies

```
 \begin{array}{lll} \text{(KU1)} & & (l_{11}*l_{22})*((l_{22}*l_{33})*(l_{11}*l_{33})) = 0, \\ \text{(KU2)} & & l_{11}*0 = 0, \\ \text{(KU3)} & & 0*l_{11} = l_{11}, \\ \text{(KU4)} & & l_{11}*l_{22} = 0 \& l_{22}*l_{11} = 0 \text{ implies } l_{11} = l_{11}, \\ \text{(KU5)} & & l_{11}*l_{11} = 0, \forall \; l_{11}, l_{22}, l_{33} \in P. \end{array}
```

Also a binary relation \leq by putting $l_{11} \leq l_{22} \Leftrightarrow l_{22} * l_{11} = 0, \forall l_{11}, l_{22} \in P$. In a KU-algebra P, the following hold:

- (KU1') $(l_{22} * l_{33}) * (l_{11} * l_{33}) \le (l_{11} * l_{22}),$
- (KU2') $0 \le l_{11}$,
- (KU3') $l_{11} \le l_{22}, l_{22} \le l_{11} \text{ implies } l_{11} = l_{22},$
- (KU4') $l_{22} * l_{11} \le l_{11}$.

Theorem 2.1 [4] In a KU-algebra P, the following axioms are satisfied: $\forall l_{11}, l_{22}, l_{33} \in P$,

- (i) $l_{11} \le l_{22}$ imply $l_{22} * l_{33} \le l_{11} * l_{33}$,
- (ii) $l_{11} * (l_{22} * l_{33}) = l_{22} * (l_{11} * l_{33}), \forall l_{11}, l_{22}, l_{33} \in P$
- (iii) $((l_{22} * l_{11}) * l_{11}) \le l_{22},$
- (iv) $(((l_{22} * l_{11}) * l_{11}) * l_{11}) = (l_{22} * l_{11}).$

A subset **I** of a KU-algebra P is called an KU-ideal [7, 8] of P if it satisfies

- (I1) $0 \in \mathbf{I}$,
- (I2) $(\forall l_{11}, l_{22} \in P) (l_{22} * l_{11} \in \mathbf{I}, l_{22} \in \mathbf{I} \Rightarrow l_{11} \in \mathbf{I}).$

Let *I* be a subset of a *KU*-algebra. Then *I* is called a positive implicative ideal [5] of *P* if the Condition (I1) holds and the following assertion is valid.

$$(\forall l_{11}, l_{22}, l_{33} \in P) (l_{33} * (l_{11} * l_{22}) \in I, l_{33} * l_{11} \in I \Rightarrow l_{11} * l_{22} \in I). \tag{1}$$

Any positive implicative ideal is an ideal, but the converse is not true [5].

Lemma 2.1 [5] A subset I of a KU-algebra P is a positive implicative ideal of P iff I is an ideal of P which satisfies the following condition.

$$(\forall l_{11}, l_{22} \in P) \ (l_{22} * (l_{22} * l_{11}) \in I \Rightarrow l_{22} * l_{11} \in I). \tag{2}$$

A non-empty subset S of a KU-algebra P is called a KU-subalgebra [7, 8] of P if $l_{11}*l_{22} \in S \ \forall \ l_{11}, l_{22} \in S$. For any family $\{\lambda_j \mid j \in \Delta\}$ of real numbers, we define

Let P denote the nonempty universe of discourse unless otherwise specified. The collection of functions F(P, [-1, 0]) from a set P to [-1, 0]. It is a negative-valued function from P to [-1, 0] (briefly, N-function on P). An N-structure refers to an ordered pair (P, f) of P and an N-function f on P([2]).

A neutrosophic \mathcal{N} (briefly, $\mathcal{N}\mathcal{N}$)-structure over P ([3]) is defined as

$$P_N = \frac{P}{(\mathbb{T}_N, \mathbb{I}_N, \mathbb{F}_N)} = \left\{ \frac{l}{(\mathbb{T}_N(l), \mathbb{I}_N(l), \mathbb{F}_N(l))} \mid l \in P \right\}$$
(3)

where \mathbb{T}_N , \mathbb{I}_N & \mathbb{F}_N are N-functions called the negative truth (resp. indeterminacy & falsity) membership function on P.

We note that every NN-structure P_N over P satisfies

$$(\forall l \in P) (-3 \le \mathbb{T}_N(l) + \mathbb{I}_N(l) + \mathbb{F}_N(l) \le 0).$$

Neutrosophic positive implicative N-ideals

Definition 3.1 Let P_N be a NN-structure over P. Then P_N is called a neutrosophic N-ideal [6] (briefly, NN-I) of P if the following condition holds.

$$(\forall l, m \in P) \left(\begin{array}{l} \mathbb{T}_{N}(0) \leq \mathbb{T}_{N}(l) \leq \bigvee \left\{ \mathbb{T}_{N}(m * l), \ \mathbb{T}_{N}(m) \right\} \\ \mathbb{I}_{N}(0) \geq \mathbb{I}_{N}(l) \geq \bigwedge \left\{ \mathbb{I}_{N}(m * l), \ \mathbb{I}_{N}(m) \right\} \\ \mathbb{F}_{N}(0) \leq \mathbb{F}_{N}(l) \leq \bigvee \left\{ \mathbb{F}_{N}(m * l), \ \mathbb{F}_{N}(m) \right\} \end{array} \right). \tag{4}$$

Definition 3.2 A NN-structure P_N over P is called a neutrosophic positive implicative N-ideal (briefly, NPiN-I) of P if the following assertions are valid.

$$(\forall l_{11} \in P) (\mathbb{T}_N(0) \le \mathbb{T}_N(l_{11}), \ \mathbb{I}_N(0) \ge \mathbb{I}_N(l_{11}), \ \mathbb{F}_N(0) \le \mathbb{F}_N(l_{11})). \tag{5}$$

$$(\forall l_{11}, m_{11}, n_{11} \in P) \left(\begin{array}{l} \mathbb{T}_{N}(n_{11} * m_{11}) \leq \bigvee \left\{ \mathbb{T}_{N}(n_{11} * (l_{11} * m_{11})), \ \mathbb{T}_{N}(n_{11} * l_{11}) \right\} \\ \mathbb{I}_{N}(n_{11} * m_{11}) \geq \bigwedge \left\{ \mathbb{I}_{N}(n_{11} * (l_{11} * m_{11})), \ \mathbb{I}_{N}(n_{11} * l_{11}) \right\} \\ \mathbb{F}_{N}(n_{11} * m_{11}) \leq \bigvee \left\{ \mathbb{F}_{N}(n_{11} * (l_{11} * m_{11})), \ \mathbb{F}_{N}(n_{11} * l_{11}) \right\} \end{array} \right)$$

$$(6)$$

Example 3.1 Consider a KU-algebra $P = \{0_k, 1_k, 2_k, 3_k, 4_k\}$ with the following Cayley table.

$$\begin{array}{|c|c|c|c|c|c|c|c|} \hline * & O_k & I_k & 2_k & 3_k & 4_k \\ \hline O_k & O_k & I_k & 2_k & 3_k & 4_k \\ \hline I_k & O_k & O_k & I_k & 3_k & 4_k \\ \hline Z_k & O_k & O_k & O_k & 3_k & 4_k \\ \hline Z_k & O_k & O_k & O_k & 0_k & 4_k \\ \hline Z_k & O_k & O_k & O_k & O_k & 0_k \\ \hline Z_k & O_k & O_k & O_k & O_k & 0_k \\ \hline Z_k & O_k & O_k & O_k & O_k & O_k \\ \hline Z_k & O_k & O_k & O_k & O_k \\ \hline Z_k & O_k & O_k & O_k & O_k \\ \hline Z_k & O_k & O_k & O_k$$

The *NN*-structure $P_N = \left\{ \frac{0_k}{(-0.7, -0.2, -0.6)}, \frac{1_k}{(-0.5, -0.3, -0.4)}, \frac{2_k}{(-0.5, -0.3, -0.4)}, \frac{3_k}{(-0.3, -0.8, -0.5)}, \frac{4_k}{(-0.3, -0.8, -0.5)} \right\}$ be a *NN*-structure over *P*. Then P_N is a *NPiN-I* of *P*.

If we take n = 0 in (6) and use (KU3), then we have the following theorem.

Theorem 3.1 Every NPiN-I is a NN-I.

The following example shows that the converse of Theorem 3.1 does not holds.

Example 3.2 Consider a KU-algebra $P = \{0_5, a_5, b_5, c_5, d_5\}$ with the following Cayley table.

*	0_5	a_5	b_5	<i>c</i> ₅	d_5
05	05	a_5	b_5	c ₅	d_5
a_5	05	05	a_5	a_5	b ₅
b_5	05	05	05	a_5	a_5
c ₅	05	05	a_5	05	b ₅
d_5	05	05	05	05	05

The *NN*-structure $P_N = \left\{ \frac{0_5}{(-0.7, -0.2, -0.6)}, \frac{a_5}{(-0.5, -0.3, -0.4)}, \frac{b_5}{(-0.5, -0.3, -0.4)}, \frac{c_5}{(-0.3, -0.8, -0.5)}, \frac{d_5}{(-0.3, -0.8, -0.5)} \right\}$. Then P_N is a *NN-I* of P but not a NPiN-I of P since $\mathbb{T}_N(c_5*b_5) = \mathbb{T}_N(a_5) = -0.5 \nleq -0.7 = \bigvee \{\mathbb{T}_N(c_5*(a_5*b_5)), \mathbb{T}_N(c_5*a_5)\}$. Given a *NN*-structure P_N over P and $\lambda, \mu, \delta \in [-1, 0]$ with $-3 \le \lambda + \mu + \delta \le 0$, we define the following sets.

$$\begin{split} \mathbb{T}_{N}^{\lambda} &:= \{l \in P \mid \mathbb{T}_{N}(l) \leq \lambda\} \,, \\ \mathbb{T}_{N}^{H} &:= \{l \in P \mid \mathbb{T}_{N}(l) \geq \mu\} \,, \\ \mathbb{F}_{N}^{\delta} &:= \{l \in P \mid \mathbb{F}_{N}(l) \leq \delta\} \,. \end{split}$$

Then we say that the set

$$P_N(\lambda, \mu, \delta) := \{l \in P \mid \mathbb{T}_N(l) \le \lambda, \mathbb{T}_N(l) \ge \mu, \mathbb{F}_N(l) \le \delta\}$$

is the (λ, μ, δ) -level set of P_N (see [6]). Obviously, we have

$$P_N(\lambda,\mu,\delta)=\mathbb{T}_N^\lambda\cap\mathbb{I}_N^\mu\cap\mathbb{F}_N^\delta.$$

Theorem 3.2 If P_N is a NPiN-I of P, then \mathbb{T}_N^{λ} , \mathbb{T}_N^{μ} and \mathbb{F}_N^{δ} are positive implicative ideals of P for all $\lambda, \mu, \delta \in [-1, 0]$ with $-3 \le \lambda + \mu + \delta \le 0$ whenever they are nonempty.

Proof. Assume that \mathbb{T}_N^{λ} , \mathbb{T}_N^{μ} and \mathbb{F}_N^{δ} are nonempty for all $\lambda, \mu, \delta \in [-1, 0]$ with $-3 \le \lambda + \mu + \delta \le 0$. Then $l_{11} \in \mathbb{T}_N^{\lambda}$, $m_{11} \in \mathbb{T}_N^{\lambda}$ $\mathbb{I}_{N}^{\mu} \text{ and } n_{11} \in \mathbb{F}_{N}^{\delta} \text{ for some } l_{11}, m_{11}, n_{11} \in P. \text{ Thus } \mathbb{T}_{N}(0) \leq \mathbb{T}_{N}(l_{11}) \leq \lambda, \ \mathbb{I}_{N}(0) \geq \mathbb{I}_{N}(m_{11}) \geq \mu, \text{ and } \mathbb{F}_{N}(0) \leq \mathbb{F}_{N}(n_{11}) \leq \delta, \text{ that is, } 0 \in \mathbb{T}_{N}^{\lambda} \cap \mathbb{F}_{N}^{\mu} \cap \mathbb{F}_{N}^{\delta}. \text{ Let } n_{11} * (l_{11} * m_{11}) \in \mathbb{T}_{N}^{\lambda} \text{ and } n_{11} * l_{11} \in \mathbb{T}_{N}^{\lambda}. \text{ Then } \mathbb{T}_{N}(n_{11} * (l_{11} * m_{11})) \leq \lambda \text{ and } \mathbb{T}_{N}(n_{11} * l_{11}) \leq \lambda,$ which imply that

$$\mathbb{T}_N(n_{11}*m_{11}) \leq \bigvee \left\{ \mathbb{T}_N(n_{11}*(l_{11}*m_{11})), \; \mathbb{T}_N(n_{11}*l_{11}) \right\} \leq \lambda,$$

that is, $n_{11} * m_{11} \in \mathbb{T}_N^{\lambda}$. If $c_{11} * (a_{11} * b_{11}) \in \mathbb{I}_N^{\mu}$ and $c_{11} * a_{11} \in \mathbb{I}_N^{\mu}$, then $\mathbb{I}_N(c_{11} * (a_{11} * b_{11})) \ge \mu$ and $\mathbb{I}_N(c_{11} * a_{11}) \ge \mu$. Thus

$$\mathbb{I}_N(c_{11}*b_{11}) \geq \bigwedge \left\{ \mathbb{I}_N(c_{11}*(a_{11}*b_{11})), \mathbb{I}_N(c_{11}*a_{11}) \right\} \geq \mu,$$

and so $c_{11}*b_{11} \in \mathbb{F}_N^{\mu}$. Finally, suppose that $w_{11}*(u_{11}*v_{11}) \in \mathbb{F}_N^{\delta}$ and $w_{11}*u_{11} \in \mathbb{F}_N^{\delta}$. Then $\mathbb{F}_N(w_{11}*(u_{11}*v_{11})) \leq \delta$ and $\mathbb{F}_N(w_{11} * u_{11}) \leq \delta$. Thus

$$\mathbb{F}_N(w_{11}*v_{11}) \leq \bigvee \left\{ \mathbb{F}_N(w_{11}*(u_{11}*v_{11})), \ \mathbb{F}_N(w_{11}*u_{11}) \right\} \leq \delta,$$

that is, $w_{11} * v_{11} \in \mathbb{F}_N^{\delta}$. Therefore \mathbb{T}_N^{λ} , \mathbb{T}_N^{μ} and \mathbb{F}_N^{δ} are positive implicative ideals of P. **Corollary 3.1** Let P_N be a NN-structure over P and let $\lambda, \mu, \delta \in [-1, 0]$ be such that $-3 \le \lambda + \mu + \delta \le 0$. If P_N is a *NPiN-I* of P, then the nonempty (λ, μ, δ) -level set of P_N is a positive implicative ideal of P. The following example illustrates Theorem 3.2.

Example 3.3 Consider a KU-algebra $P = \{0_k, 1_k, 2_k, 3_k, 4_k\}$ with the following Cayley table.

* O _k	1_k	$ 2_k $	3_k	4 _k
$0_k \mid 0_k$	1_k	$ 2_k $	3_k	4_k
$1_k \mid 0_k$	0_k	1_k	3_k	4_k
$2_k \mid 0_k$	0_k	0_k	3_k	4_k
$3_k \mid 0_k$	0_k	0_k	0_k	4 _k
$4_k \mid 0_k$	O_k	0_k	0_k	0_k

The *NN*-structure $P_N = \left\{ \frac{0_k}{(-0.7, -0.2, -0.6)}, \frac{1_k}{(-0.5, -0.3, -0.4)}, \frac{2_k}{(-0.5, -0.3, -0.4)}, \frac{3_k}{(-0.3, -0.8, -0.5)}, \frac{4_k}{(-0.3, -0.8, -0.5)} \right\}$ be a *NPiN-I* of *P*. Then

$$\mathbb{T}_{N}^{\lambda} = \begin{cases} \emptyset & \text{if } \lambda \in [-1, -0.7) \\ \{0_{k}\} & \text{if } \lambda \in [-0.7, -0.5) \\ \{0_{k}, 1_{k}, 2_{k}\} & \text{if } \lambda \in [-0.5, -0.3) \\ P & \text{if } \lambda \in [-0.3, 0] \end{cases}$$

$$(\emptyset) \qquad \text{if } \mu \in (-0.2, 0]$$

$$\mathbb{I}_{N}^{\mu} = \begin{cases} \emptyset & \text{if } \mu \in (-0.2, 0] \\ \{0_{k}\} & \text{if } \mu \in (-0.3, -0.2] \\ \{0_{k}, 1_{k}, 2_{k}\} & \text{if } \mu \in (-0.8, -0.3] \\ P & \text{if } \mu \in [-1, -0.8] \end{cases}$$

and

$$\mathbb{F}_N^{\delta} = \left\{ \begin{array}{ll} \emptyset & \text{if } \delta \in [-1, -0.6) \\ \{0_k\} & \text{if } \delta \in [-0.6, -0.5) \\ \{0_k, 3_k, 4_k\} & \text{if } \delta \in [-0.5, -0.4) \\ P & \text{if } \delta \in [-0.4, 0] \end{array} \right.$$

which are positive implicative ideals of P.

Lemma 3.1 [6] Every NN- IP_N of P satisfies the following assertions:

$$(l_{11}, m_{11} \in P) (l_{11} \le m_{11} \Rightarrow \mathbb{T}_N(l_{11}) \le \mathbb{T}_N(m_{11}), \ \mathbb{I}_N(l_{11}) \ge \mathbb{I}_N(m_{11}), \ \mathbb{F}_N(l_{11}) \le \mathbb{F}_N(m_{11})). \tag{7}$$

We discuss conditions for a NN-I to be a NPiN-I.

Theorem 3.3 Let P_N be a NN-I of P. Then P_N is a NPiN-I of P iff the following assertion is valid.

$$(\forall l_{11}, m_{11} \in P) \begin{pmatrix} \mathbb{T}_{N}(n_{11} * m_{11}) \leq \mathbb{T}_{N}(n_{11} * (n_{11} * m_{11})) \\ \mathbb{I}_{N}(n_{11} * m_{11}) \geq \mathbb{I}_{N}(n_{11} * (n_{11} * m_{11})) \\ \mathbb{F}_{N}(n_{11} * m_{11}) \leq \mathbb{F}_{N}(n_{11} * (n_{11} * m_{11})) \end{pmatrix}$$

$$(8)$$

Proof. Assume that P_N is a NPiN-I of P. If l_{11} is replaced by n_{11} in (6) then

$$\mathbb{T}_{N}(n_{11} * m_{11}) \leq \bigvee \left\{ \mathbb{T}_{N}(n_{11} * (n_{11} * m_{11})), \ \mathbb{T}_{N}(n_{11} * n_{11}) \right\} \\
= \bigvee \left\{ \mathbb{T}_{N}(n_{11} * (n_{11} * m_{11})), \ \mathbb{T}_{N}(0) \right\} = \mathbb{T}_{N}(n_{11} * (n_{11} * m_{11})) \\
\mathbb{I}_{N}(n_{11} * m_{11}) \geq \bigwedge \left\{ \mathbb{I}_{N}(n_{11} * (n_{11} * m_{11})), \ \mathbb{I}_{N}(n_{11} * n_{11}) \right\} \\
= \bigwedge \left\{ \mathbb{I}_{N}(n_{11} * (n_{11} * m_{11})), \ \mathbb{I}_{N}(0) \right\} = \mathbb{I}_{N}(n_{11} * (n_{11} * m_{11}))$$

and

$$\mathbb{F}_{N}(n_{11} * m_{11}) \leq \bigvee \{\mathbb{F}_{N}(n_{11} * (n_{11} * m_{11})), \ \mathbb{F}_{N}(n_{11} * n_{11})\}$$

$$= \bigvee \{\mathbb{F}_{N}(n_{11} * (n_{11} * m_{11})), \mathbb{F}_{N}(0)\} = \mathbb{F}_{N}(n_{11} * (n_{11} * m_{11}))$$

by (KU5) and (5).

Conversely, let P_N be a NN-I of P satisfying (8). Since

$$(n_{11} * l_{11}) * (n_{11} * (n_{11} * m_{11})) \le l_{11} * (n_{11} * m_{11}) = n_{11} * (l_{11} * m_{11})$$

for all $l_{11}, m_{11}, n_{11} \in P$, we have

$$(\forall \ l_{11}, m_{11}, n_{11} \in P) \left(\begin{array}{l} \mathbb{T}_{N}((n_{11} * l_{11}) * (n_{11} * (n_{11} * m_{11}))) \leq \mathbb{T}_{N}(n_{11} * (l_{11} * m_{11})) \\ \mathbb{I}_{N}((n_{11} * l_{11}) * (n_{11} * (n_{11} * m_{11}))) \geq \mathbb{I}_{N}(n_{11} * (l_{11} * m_{11})) \\ \mathbb{F}_{N}((n_{11} * l_{11}) * (n_{11} * (n_{11} * m_{11}))) \leq \mathbb{F}_{N}(n_{11} * (l_{11} * m_{11})) \end{array} \right)$$

by Lemma 3.1. It follows from (4) and (8) that

$$\begin{split} \mathbb{T}_{N}(n_{11}*m_{11}) &\leq \mathbb{T}_{N}(n_{11}*(n_{11}*m_{11})) \\ &\leq \bigvee \left\{ \mathbb{T}_{N}((n_{11}*l_{11})*(n_{11}*(n_{11}*m_{11}))), \ \mathbb{T}_{N}(n_{11}*l_{11}) \right\} \\ &\leq \bigvee \left\{ \mathbb{T}_{N}(n_{11}*(l_{11}*m_{11})), \ \mathbb{T}_{N}(n_{11}*l_{11}) \right\} \\ \mathbb{I}_{N}(n_{11}*m_{11}) &\geq \mathbb{I}_{N}(n_{11}*(n_{11}*m_{11})) \\ &\geq \bigwedge \left\{ \mathbb{I}_{N}((n_{11}*l_{11})*(n_{11}*(n_{11}*m_{11}))), \ \mathbb{I}_{N}(n_{11}*l_{11}) \right\} \\ &\geq \bigwedge \left\{ \mathbb{I}_{N}(n_{11}*(l_{11}*m_{11})), \ \mathbb{I}_{N}(n_{11}*l_{11}) \right\} \end{split}$$

and

$$\begin{split} \mathbb{F}_{N}(n_{11}*m_{11}) &\leq \mathbb{F}_{N}(n_{11}*(n_{11}*m_{11})) \\ &\leq \bigvee \left\{ \mathbb{F}_{N}((n_{11}*l_{11})*(n_{11}*(n_{11}*m_{11}))), \ \mathbb{F}_{N}(n_{11}*l_{11}) \right\} \\ &\leq \bigvee \left\{ \mathbb{F}_{N}(n_{11}*(l_{11}*m_{11})), \ \mathbb{F}_{N}(n_{11}*l_{11}) \right\} \end{split}$$

Therefore P_N is a NPiN-I of P.

Lemma 3.2 [6] For any $NN-IP_N$ of P, we have

$$(\forall l_{11}, m_{11}, n_{11} \in P) \left(m_{11} * l_{11} \le n_{11} \Rightarrow \begin{cases} \mathbb{T}_{N}(l_{11}) \le \bigvee \{ \mathbb{T}_{N}(m_{11}), \mathbb{T}_{N}(n_{11}) \} \\ \mathbb{I}_{N}(l_{11}) \ge \bigwedge \{ \mathbb{I}_{N}(m_{11}), \mathbb{I}_{N}(n_{11}) \} \\ \mathbb{F}_{N}(l_{11}) \le \bigvee \{ \mathbb{F}_{N}(m_{11}), \mathbb{F}_{N}(n_{11}) \} \end{cases} \right)$$

$$(9)$$

Lemma 3.3 If a NN-structure P_N over P satisfies the condition (9), then P_N is a NN-I of P.

Proof. Since $l_{11} * 0 \le l_{11}$ for all $l_{11} \in P$, we have $\mathbb{T}_N(0) \le \mathbb{T}_N(l_{11})$, $\mathbb{T}_N(0) \ge \mathbb{T}_N(l_{11})$ and $\mathbb{T}_N(0) \le \mathbb{T}_N(l_{11})$ for all $l_{11} \in P$ by (9). Note that $l_{11} * (m_{11} * l_{11}) \le m_{11}$ for all $l_{11}, m_{11} \in P$. It follows from (9) that

$$\mathbb{T}_N(l_{11}) \leq \bigvee \left\{ \mathbb{T}_N(m_{11} * l_{11}), \ \mathbb{T}_N(m_{11}) \right\}, \ \mathbb{I}_N(l_{11}) \geq \bigwedge \left\{ \mathbb{I}_N(m_{11} * l_{11}), \ \mathbb{I}_N(m_{11}) \right\},$$

and $\mathbb{F}_N(l_{11}) \leq \bigvee \{ \mathbb{F}_N(m_{11} * l_{11}), \ \mathbb{F}_N(m_{11}) \}$ for all $l_{11}, m_{11} \in P$. Therefore P_N is a NN-I of P. **Theorem 3.4** For any NN-structure P_N over P, the following assertions are equivalent.

- P_N is a NPiN-I of P.
- P_N satisfies the following condition. (ii)

$$a_{11} * (n_{11} * (n_{11} * m_{11})) \le b_{11} \Rightarrow \begin{cases} \mathbb{T}_{N}(n_{11} * m_{11}) \le \bigvee \{\mathbb{T}_{N}(a_{11}), \mathbb{T}_{N}(b_{11})\} \\ \mathbb{I}_{N}(n_{11} * m_{11}) \ge \bigwedge \{\mathbb{I}_{N}(a_{11}), \mathbb{I}_{N}(b_{11})\} \\ \mathbb{F}_{N}(n_{11} * m_{11}) \le \bigvee \{\mathbb{F}_{N}(a_{11}), \mathbb{F}_{N}(b_{11})\} \end{cases}$$

$$(10)$$

for all $l_{11}, m_{11}, a_{11}, b_{11} \in P$.

Proof. Suppose that P_N is a NPiN-I of P. Then P_N is a NN-I of P by Theorem 3.1. Let $l_{11}, m_{11}, a_{11}, b_{11} \in P$ be such that $a_{11} * (n_{11} * (n_{11} * m_{11})) \le b_{11}$. Then

$$\mathbb{T}_{N}(n_{11} * m_{11}) \leq \mathbb{T}_{N}(n_{11} * (n_{11} * m_{11})) \leq \bigvee \{\mathbb{T}_{N}(a_{11}), \mathbb{T}_{N}(b_{11})\},
\mathbb{I}_{N}(n_{11} * m_{11}) \geq \mathbb{I}_{N}(n_{11} * (n_{11} * m_{11})) \geq \bigwedge \{\mathbb{I}_{N}(a_{11}), \mathbb{I}_{N}(b_{11})\},
\mathbb{F}_{N}(n_{11} * m_{11}) \leq \mathbb{F}_{N}(n_{11} * (n_{11} * m_{11})) \leq \bigvee \{\mathbb{F}_{N}(a_{11}), \mathbb{F}_{N}(b_{11})\},$$

by Theorem 3.3 and Lemma 3.2.

Conversely, let P_N be a NN-structure over P that satisfies (10). Let $l_{11}, a_{11}, b_{11} \in P$ be such that $a_{11} * l_{11} \le b_{11}$. Then $(0 * (0 * a_{11})) * l_{11} \le b_{11}$, and so

$$\begin{split} \mathbb{T}_N(l_{11}) &= \mathbb{T}_N(0*l_{11}) \leq \bigvee \left\{ \mathbb{T}_N(a_{11}), \ \mathbb{T}_N(b_{11}) \right\}, \\ \mathbb{I}_N(l_{11}) &= \mathbb{I}_N(0*l_{11}) \geq \bigwedge \left\{ \mathbb{I}_N(a_{11}), \ \mathbb{I}_N(b_{11}) \right\}, \\ \mathbb{F}_N(l_{11}) &= \mathbb{F}_N(0*l_{11}) \leq \bigvee \left\{ \mathbb{F}_N(a_{11}), \ \mathbb{F}_N(b_{11}) \right\}. \end{split}$$

Hence P_N is a NN-I of P by Lemma 3.3. Since $(n_{11} * (l_{11} * m_{11}) * (n_{11} * (l_{11} * m_{11})) \le 0$, it follows from (10) and (5)) that

$$\mathbb{T}_{N}(n_{11}*m_{11}) \leq \bigvee \{\mathbb{T}_{N}(n_{11}*(n_{11}*m_{11})), \ \mathbb{T}_{N}(0)\} = \mathbb{T}_{N}(n_{11}*(n_{11}*m_{11})), \ \mathbb{T}_{N}(n_{11}*m_{11}) \geq \bigwedge \{\mathbb{F}_{N}(n_{11}*(n_{11}*m_{11})), \ \mathbb{F}_{N}(0)\} = \mathbb{F}_{N}(n_{11}*(n_{11}*m_{11})), \ \mathbb{F}_{N}(n_{11}*m_{11}) \leq \bigvee \{\mathbb{F}_{N}(n_{11}*(n_{11}*m_{11})), \ \mathbb{F}_{N}(0)\} = \mathbb{F}_{N}(n_{11}*(n_{11}*m_{11})).$$

for all l_{11} , $m_{11} \in P$. Therefore P_N is a NPiN-I of P by Theorem 3.3.

Lemma 3.4 [6] Let P_N be a NN-structure over P and assume that \mathbb{T}_N^{λ} , \mathbb{T}_N^{μ} and \mathbb{F}_N^{δ} are ideals of P for all $\lambda, \mu, \delta \in [-1, 0]$ with $-3 \le \lambda + \mu + \delta \le 0$. Then P_N is a NN-I of P.

Theorem 3.5 Let P_N be a NN-structure over P and assume that \mathbb{T}_N^{λ} , \mathbb{T}_N^{μ} and \mathbb{F}_N^{δ} are positive implicative ideals of P

for all $\lambda, \mu, \delta \in [-1, 0]$ with $-3 \le \lambda + \mu + \delta \le 0$. Then P_N is a NPiN-I of P. **Proof.** If $\mathbb{T}^{\lambda}_N, \mathbb{I}^{\mu}_N$ and \mathbb{F}^{δ}_N are positive implicative ideals of P, then $\mathbb{T}^{\lambda}_N, \mathbb{I}^{\mu}_N$ and \mathbb{F}^{δ}_N are ideals of P. Thus P_N is a NN-I of P by Lemma 3.4. Let $l_{11}, m_{11} \in P$ and $\lambda, \mu, \delta \in [-1, 0]$ with $-3 \le \lambda + \mu + \delta \le 0$ such that $\mathbb{T}_N(m_{11} * (m_{11} * l_{11})) = \lambda$, $\mathbb{I}_N(m_{11} * (m_{11} * l_{11})) = \mu$ and $\mathbb{F}_N(m_{11} * (m_{11} * l_{11})) = \delta$. Then $m_{11} * (m_{11} * l_{11}) \in \mathbb{T}^{\lambda}_N \cap \mathbb{F}^{\delta}_N$. Since $\mathbb{T}^{\lambda}_N \cap \mathbb{F}^{\delta}_N$. Since $\mathbb{T}^{\lambda}_N \cap \mathbb{F}^{\delta}_N$ is a positive implicative ideal of P, it follows from Lemma 2.1 that $m_{11}*l_{11} \in \mathbb{T}_N^{\lambda} \cap \mathbb{F}_N^{\lambda}$. Hence

$$\mathbb{T}_N(m_{11} * l_{11}) \le \lambda = \mathbb{T}_N(m_{11} * (m_{11} * l_{11})),$$

$$\mathbb{I}_N(m_{11} * l_{11}) \ge \mu = \mathbb{I}_N(m_{11} * (m_{11} * l_{11})),$$

$$\mathbb{F}_N(m_{11} * l_{11}) \le \delta = \mathbb{F}_N(m_{11} * (m_{11} * l_{11})).$$

Therefore P_N is a NPiN-I of P by Theorem 3.3.

Lemma 3.5 [6] Let P_N be a NN-I of P. Then P_N satisfies the condition (8) iff it satisfies the following condition.

$$(\forall l_{11}, m_{11}, n_{11} \in P) \begin{pmatrix} \mathbb{T}_{N}((l_{11} * m_{11}) * (l_{11} * n_{11})) \leq \mathbb{T}_{N}(l_{11} * (m_{11} * n_{11})) \\ \mathbb{I}_{N}((l_{11} * m_{11}) * (l_{11} * n_{11})) \geq \mathbb{I}_{N}(l_{11} * (m_{11} * n_{11})) \\ \mathbb{F}_{N}((l_{11} * m_{11}) * (l_{11} * n_{11})) \leq \mathbb{F}_{N}(l_{11} * (m_{11} * n_{11})) \end{pmatrix}.$$

$$(11)$$

Corollary 3.2 Let P_N be a NN-I of P. Then P_N is a NPiN-I of P iff P_N satisfies (11).

Proof. It follows from Theorem 3.3 and Lemma 3.5.

Theorem 3.6 For any NN-structure P_N over P, then the assertions

- (i) P_N is a NPiN-I of P.
- (ii) P_N satisfies the following condition.

$$a_{11} * (l_{11} * (m_{11} * n_{11})) \leq b_{11} \Rightarrow \begin{cases} \mathbb{T}_{N}((l_{11} * m_{11}) * (l_{11} * n_{11})) \leq \bigvee \{\mathbb{T}_{N}(a_{11}), \mathbb{T}_{N}(b_{11})\}, \\ \mathbb{I}_{N}((l_{11} * m_{11}) * (l_{11} * n_{11})) \geq \bigwedge \{\mathbb{I}_{N}(a_{11}), \mathbb{I}_{N}(b_{11})\}, \\ \mathbb{F}_{N}((l_{11} * m_{11}) * (l_{11} * n_{11})) \leq \bigvee \{\mathbb{F}_{N}(a_{11}), \mathbb{F}_{N}(b_{11})\}, \end{cases}$$
(12)

for all $l_{11}, m_{11}, n_{11}, a_{11}, b_{11} \in P$

are equivalent.

Proof. Suppose that P_N is a NPiN-I of P. Then P_N is a NN-I of P by Theorem 3.1. Let $l_{11}, m_{11}, n_{11}, a_{11}, b_{11} \in P$ be such that $a_{11} * (l_{11} * (m_{11} * n_{11})) \le b_{11}$. Using Corollary 3.2 and Lemma 3.2, we have

$$\mathbb{T}_{N}((l_{11} * m_{11}) * (l_{11} * n_{11})) \leq \mathbb{T}_{N}(l_{11} * (m_{11} * n_{11})) \leq \bigvee \{\mathbb{T}_{N}(a_{11}), \mathbb{T}_{N}(b_{11})\},
\mathbb{I}_{N}((l_{11} * m_{11}) * (l_{11} * n_{11})) \geq \mathbb{I}_{N}(l_{11} * (m_{11} * n_{11})) \geq \bigwedge \{\mathbb{I}_{N}(a_{11}), \mathbb{I}_{N}(b_{11})\},
\mathbb{F}_{N}((l_{11} * m_{11}) * (l_{11} * n_{11})) \leq \mathbb{F}_{N}(l_{11} * (m_{11} * n_{11})) \leq \bigvee \{\mathbb{F}_{N}(a_{11}), \mathbb{F}_{N}(b_{11})\},$$

for all $l_{11}, m_{11}, n_{11}, a_{11}, b_{11} \in P$.

Conversely, let P_N be a NN-structure over P that satisfies (12). Let $l_{11}, m_{11}, a_{11}, b_{11} \in P$ be such that $a_{11} * (n_{11} * m_{11}) \le b_{11}$. Then

$$\mathbb{T}_{N}(n_{11} * m_{11}) = \mathbb{T}_{N}((n_{11} * m_{11}) * (n_{11} * n_{11})) \leq \bigvee \{\mathbb{T}_{N}(a_{11}), \mathbb{T}_{N}(b_{11})\},
\mathbb{I}_{N}(n_{11} * m_{11}) = \mathbb{I}_{N}((n_{11} * m_{11}) * (n_{11} * n_{11})) \geq \bigwedge \{\mathbb{I}_{N}(a_{11}), \mathbb{I}_{N}(b_{11})\},
\mathbb{F}_{N}(n_{11} * m_{11}) = \mathbb{F}_{N}((n_{11} * m_{11}) * (n_{11} * n_{11})) \leq \bigvee \{\mathbb{F}_{N}(a_{11}), \mathbb{F}_{N}(b_{11})\},$$

by (KU3), (KU5) and (12). It follows from Theorem 3.4 that P_N is a NPiN-I of P.

Theorem 3.7 Let P_N be a NN-structure over P. Then P_N is a NPiN-I of P iff P_N satisfies (5) and

$$(\forall l_{11}, m_{11}, n_{11} \in P) \left(\begin{array}{l} \mathbb{T}_{N}(l_{11} * m_{11}) \leq \bigvee \left\{ \mathbb{T}_{N}(n_{11} * (l_{11} * (l_{11} * m_{11}))), \, \mathbb{T}_{N}(n_{11}) \right\}, \\ \mathbb{I}_{N}(l_{11} * m_{11}) \geq \bigwedge \left\{ \mathbb{I}_{N}(n_{11} * (l_{11} * (l_{11} * m_{11}))), \, \mathbb{I}_{N}(n_{11}) \right\}, \\ \mathbb{F}_{N}(l_{11} * m_{11}) \leq \bigvee \left\{ \mathbb{F}_{N}(n_{11} * (l_{11} * (l_{11} * m_{11}))), \, \mathbb{F}_{N}(n_{11}) \right\}. \end{array} \right)$$

$$(13)$$

Proof. Assume that P_N is a NPiN-I of P. Then P_N is a NN-I of P by Theorem 3.1, and so the condition (5) is valid. Using (4), (KU3), (KU5), Theorem 2.1 and (11), we have

$$\mathbb{T}_{N}(l_{11} * m_{11}) \leq \bigvee \left\{ \mathbb{T}_{N}(n_{11} * (l_{11} * m_{11})), \, \mathbb{T}_{N}(n_{11}) \right\} \\
= \bigvee \left\{ \mathbb{T}_{N}(((l_{11} * l_{11}) * (l_{11} * (n_{11} * m_{11})), \, \mathbb{T}_{N}(n_{11}) \right\} \\
\leq \bigvee \left\{ \mathbb{T}_{N}(l_{11} * (l_{11} * (n_{11} * m_{11}))), \, \mathbb{T}_{N}(n_{11}) \right\} \\
= \bigvee \left\{ \mathbb{T}_{N}(n_{11} * (l_{11} * (l_{11} * m_{11}))), \, \mathbb{T}_{N}(n_{11}) \right\}, \\
\mathbb{I}_{N}(l_{11} * m_{11}) \geq \bigwedge \left\{ \mathbb{I}_{N}(n_{11} * (l_{11} * m_{11})), \, \mathbb{I}_{N}(n_{11}) \right\} \\
= \bigwedge \left\{ \mathbb{I}_{N}((l_{11} * l_{11}) * (l_{11} * (n_{11} * m_{11}))), \, \mathbb{I}_{N}(n_{11}) \right\} \\
\geq \bigwedge \left\{ \mathbb{I}_{N}(l_{11} * (l_{11} * (l_{11} * m_{11}))), \, \mathbb{I}_{N}(n_{11}) \right\}, \\
= \bigwedge \left\{ \mathbb{I}_{N}(n_{11} * (l_{11} * (l_{11} * m_{11}))), \, \mathbb{I}_{N}(n_{11}) \right\}, \\$$

and

$$\begin{split} \mathbb{F}_{N}(l_{11}*m_{11}) &\leq \bigvee \left\{ \mathbb{F}_{N}(n_{11}*(l_{11}*m_{11})), \ \mathbb{F}_{N}(n_{11}) \right\} \\ &= \bigvee \left\{ \mathbb{F}_{N}((l_{11}*l_{11})*(l_{11}*(n_{11}*m_{11}))), \ \mathbb{F}_{N}(n_{11}) \right\} \\ &\leq \bigvee \left\{ \mathbb{F}_{N}(l_{11}*(l_{11}*(n_{11}*m_{11}))), \ \mathbb{F}_{N}(n_{11}) \right\} \\ &= \bigvee \left\{ \mathbb{F}_{N}(n_{11}*(l_{11}*(l_{11}*m_{11}))), \ \mathbb{F}_{N}(n_{11}) \right\}, \end{split}$$

for all $l_{11}, m_{11}, n_{11} \in P$. Therefore (13) is valid.

Conversely, if P_N is a NN-structure over P satisfying two Conditions (5) and (13), then

$$\begin{split} &\mathbb{T}_N(l_{11}) = \mathbb{T}_N(0*l_{11}) \leq \bigvee \left\{ \mathbb{T}_N(n_{11}*(0*(0*l_{11}))), \mathbb{T}_N(n_{11}) \right\} = \bigvee \left\{ \mathbb{T}_N(n_{11}*l_{11}), \mathbb{T}_N(n_{11}) \right\} \\ &\mathbb{I}_N(l_{11}) = \mathbb{I}_N(0*l_{11}) \geq \bigwedge \left\{ \mathbb{I}_N(n_{11}*(0*(0*l_{11}))), \mathbb{I}_N(n_{11}) \right\} = \bigwedge \left\{ \mathbb{I}_N(n_{11}*l_{11}), \mathbb{I}_N(n_{11}) \right\} \\ &\mathbb{F}_N(l_{11}) = \mathbb{F}_N(0*l_{11}) \leq \bigvee \left\{ \mathbb{F}_N(n_{11}*(0*(0*l_{11}))), \mathbb{F}_N(n_{11}) \right\} = \bigvee \left\{ \mathbb{F}_N(n_{11}*l_{11}), \mathbb{F}_N(n_{11}) \right\} \end{split}$$

for all l_{11} , $n_{11} \in P$. Hence P_N is a NN-I of P. Now, if we take n = 0 in (13) and use (KU3), then

$$\begin{split} \mathbb{T}_{N}(l_{11}*m_{11}) &\leq \bigvee \left\{ \mathbb{T}_{N}(0*(l_{11}*(l_{11}*m_{11}))), \ \mathbb{T}_{N}(0) \right\} \\ &= \bigvee \left\{ \mathbb{T}_{N}(l_{11}*(l_{11}*m_{11})), \ \mathbb{T}_{N}(0) \right\} = \mathbb{T}_{N}(l_{11}*(l_{11}*m_{11})) \\ \mathbb{I}_{N}(l_{11}*m_{11}) &\geq \bigwedge \left\{ \mathbb{I}_{N}(0*(l_{11}*(l_{11}*m_{11}))), \ \mathbb{I}_{N}(0) \right\} \\ &= \bigwedge \left\{ \mathbb{I}_{N}(l_{11}*(l_{11}*m_{11})), \ \mathbb{I}_{N}(0) \right\} = \mathbb{I}_{N}(l_{11}*(l_{11}*m_{11})) \end{split}$$

and

$$\begin{split} \mathbb{F}_N(l_{11}*m_{11}) &\leq \bigvee \left\{ \mathbb{F}_N(0*(l_{11}*(l_{11}*m_{11}))), \ \mathbb{F}_N(0) \right\} \\ &= \bigvee \left\{ \mathbb{F}_N(l_{11}*(l_{11}*m_{11})), \ \mathbb{F}_N(0) \right\} = \mathbb{F}_N(l_{11}*(l_{11}*m_{11})) \end{split}$$

for all l_{11} , $m_{11} \in P$. It follows from Theorem 3.3 that P_N is a NPiN-I of P. Summarizing the above results, we have a characterization of a NPiN-I.

Theorem 3.8 For a NN-structure P_N over P, the following assertions are equivalent.

- (i) P_N is a NPiN-I of P.
- (ii) P_N is a NN-I of P satisfying the condition (8).
- (iii) P_N is a NN-I of P satisfying the condition (11).
- (iv) P_N satisfies two conditions (5) and (13)
- (v) P_N satisfies the condition (10)
- (vi) P_N satisfies the condition (I1)

For any fixed numbers $\zeta_T, \zeta_F \in [-1,0), \zeta_1 \in (-1,0]$ and a nonempty subset G of P, a NN-structure P_N^G over P is defined to be the structure

$$P_N^G := \frac{P}{\left(\mathbb{T}_N^G, \mathbb{I}_N^G, \mathbb{F}_N^G\right)} = \left\{ \frac{l}{\left(\mathbb{T}_N^G(l_{11}), \mathbb{F}_N^G(l_{11}), \mathbb{F}_N^G(l_{11})\right)} \mid l \in P \right\}$$
(14)

where \mathbb{T}_N^G , \mathbb{T}_N^G and \mathbb{F}_N^G are N-functions on P which are given as follows:

$$\mathbb{T}_{N}^{G}: P \to [-1, 0], \ l \mapsto \left\{ \begin{array}{ll} \zeta_{T} & \text{if } l \in G \\ 0 & \text{otherwise,} \end{array} \right.$$

$$\mathbb{T}_{N}^{G}: P \to [-1, 0], \ l \mapsto \left\{ \begin{array}{ll} \zeta_{I} & \text{if } l \in G \\ -1 & \text{otherwise} \end{array} \right.$$

and

$$\mathbb{F}_N^G: P \to [-1,0], \ l \mapsto \begin{cases} \zeta_F & \text{if } l \in G \\ 0 & \text{otherwise} \end{cases}$$

Theorem 3.9 Given a nonempty subset H of P, a NN-structure P_N^H over P is a NPiN-I of P iff H is a positive implicative ideal of P.

Proof. Assume that H is a positive implicative ideal of P. Since $0 \in H$, it follows that $\mathbb{T}_N^H(0) = \zeta_T \leq \mathbb{T}_N^H(l_{11})$, $\mathbb{T}_N^H(0) = \zeta_I \geq \mathbb{T}_N^H(l_{11})$, and $\mathbb{F}_N^H(0) = \zeta_F \leq \mathbb{F}_N^H(l_{11})$ for all $l_{11} \in P$. For any $l_{11}, m_{11}, m_{11} \in P$, we consider four cases:

Case 1. $n_{11} * (l_{11} * m_{11}) \in H$ and $n_{11} * l_{11} \in H$,

Case 2. $n_{11} * (l_{11} * m_{11}) \in H$ and $n_{11} * l_{11} \notin H$,

Case 3. $n_{11} * (l_{11} * m_{11}) \notin H$ and $n_{11} * l_{11} \in H$,

Case 4. $n_{11} * (l_{11} * m_{11}) \notin H$ and $n_{11} * l_{11} \notin H$,

Case 1 implies that $n_{11} * m_{11} \in H$, and thus

$$\begin{split} \mathbb{T}_N^H(n_{11}*m_{11}) &= \mathbb{T}_N^H(n_{11}*(l_{11}*m_{11})) = \mathbb{T}_N^H(n_{11}*l_{11}) = \zeta_T, \\ \mathbb{I}_N^H(n_{11}*m_{11}) &= \mathbb{I}_N^H(n_{11}*(l_{11}*m_{11})) = \mathbb{I}_N^H(n_{11}*l_{11}) = \zeta_I, \\ \mathbb{F}_N^H(n_{11}*m_{11}) &= \mathbb{F}_N^H(n_{11}*(l_{11}*m_{11})) = \mathbb{F}_N^H(n_{11}*l_{11}) = \zeta_F. \end{split}$$

Hence

$$\mathbb{T}_{N}^{H}(n_{11} * m_{11}) \leq \bigvee \left\{ \mathbb{T}_{N}^{H}(n_{11} * (l_{11} * m_{11})), \mathbb{T}_{N}^{H}(n_{11} * l_{11}) \right\},
\mathbb{I}_{N}^{H}(n_{11} * m_{11}) \geq \bigwedge \left\{ \mathbb{I}_{N}^{H}(n_{11} * (l_{11} * m_{11})), \mathbb{I}_{N}^{H}(n_{11} * l_{11}) \right\},
\mathbb{F}_{N}^{H}(n_{11} * m_{11}) \leq \bigvee \left\{ \mathbb{F}_{N}^{H}(n_{11} * (l_{11} * m_{11})), \mathbb{F}_{N}^{H}(n_{11} * l_{11}) \right\}.$$

If Case 2 is valid, then $\mathbb{T}_N^H(n_{11}*l_{11})=0$, $\mathbb{T}_N^H(n_{11}*l_{11})=-1$ and $\mathbb{F}_N^H(n_{11}*l_{11})=0$. Thus

$$\begin{split} &\mathbb{T}_N^H(n_{11}*m_{11}) \leq 0 = \bigvee \left\{ \mathbb{T}_N^H(n_{11}*(l_{11}*m_{11})), \; \mathbb{T}_N^H(n_{11}*l_{11}) \right\}, \\ &\mathbb{I}_N^H(n_{11}*m_{11}) \geq -1 = \bigwedge \left\{ \mathbb{I}_N^H(n_{11}*(l_{11}*m_{11})), \; \mathbb{I}_N^H(n_{11}*l_{11}) \right\}, \\ &\mathbb{F}_N^H(n_{11}*m_{11}) \leq 0 = \bigvee \left\{ \mathbb{F}_N^H(n_{11}*(l_{11}*m_{11})), \; \mathbb{F}_N^H(n_{11}*l_{11}) \right\}. \end{split}$$

For the Case 3, it is similar to the Case 2. For the Case 4, it is clear that

$$\mathbb{T}_{N}^{H}(n_{11} * m_{11}) \leq \bigvee \left\{ \mathbb{T}_{N}^{H}(n_{11} * (l_{11} * m_{11})), \mathbb{T}_{N}^{H}(n_{11} * l_{11}) \right\}, \\
\mathbb{I}_{N}^{H}(n_{11} * m_{11}) \geq \bigwedge \left\{ \mathbb{I}_{N}^{H}(n_{11} * (l_{11} * m_{11})), \mathbb{I}_{N}^{H}(n_{11} * l_{11}) \right\}, \\
\mathbb{F}_{N}^{H}(n_{11} * m_{11}) \leq \bigvee \left\{ \mathbb{F}_{N}^{H}(n_{11} * (l_{11} * m_{11})), \mathbb{F}_{N}^{H}(n_{11} * l_{11}) \right\}.$$

Therefore P_N^H is a NPiN-I of P.

Conversely, suppose that P_N^H is a NPiN-I of P. Then $\left(\mathbb{T}_N^H\right)^{\frac{\zeta_T}{2}}=H$, $\left(\mathbb{I}_N^H\right)^{\frac{\zeta_T}{2}}=H$ and $\left(\mathbb{F}_N^H\right)^{\frac{\zeta_F}{2}}=H$ are positive implicative ideals of P by Theorem 3.2.

We consider an extension property of a NPiN-I based on the negative indeterminacy membership function.

Lemma 3.6 Let A_{11} and B_{11} be ideals of $P \ni A_{11} \subseteq B_{11}$. If A_{11} is a positive implicative ideal of P, then so is B_{11} . **Theorem 3.10** Let

$$P_N := \frac{P}{(\mathbb{T}_N, \mathbb{I}_N, \ \mathbb{F}_N)} = \left\{ \frac{l}{(\mathbb{T}_N(l_{11}), \mathbb{I}_N(l_{11}), \ \mathbb{F}_N(l_{11}))} \mid l \in P \right\}$$

and

$$P_M := \frac{P}{(T_M, I_M, F_M)} = \left\{ \frac{l}{(T_M(l_{11}), I_M(l_{11}), F_M(l_{11}))} \mid l \in P \right\}$$

be *NN-I*s of *P* such that $P_N(=, \le, =)P_M$, that is, $\mathbb{T}_N(l_{11}) = T_M(l_{11})$, $\mathbb{T}_N(l_{11}) \le I_M(l_{11})$ and $\mathbb{F}_N(l_{11}) = F_M(l_{11})$ for all $l_{11} \in P$. If P_N is a *NPiN-I* of *P*, then so is P_M .

Proof. Assume that P_N is a NPiN-I of P. Then \mathbb{T}_N^{λ} , \mathbb{I}_N^{μ} and \mathbb{F}_N^{δ} are positive implicative ideals of P for all $\lambda, \mu, \delta \in [-1,0]$ by Theorem 3.2. The condition $P_N(=, \leq, =)P_M$ implies that $\mathbb{T}_N^{\zeta_T} = T_M^{\zeta_T}$, $\mathbb{T}_N^{\zeta_I} \subseteq I_M^{\zeta_I}$ and $\mathbb{F}_N^{\zeta_F} = F_M^{\zeta_F}$. It follows from Lemma 3.6 that T_M^{λ} , I_M^{μ} and F_M^{δ} are positive implicative ideals of P for all $\lambda, \mu, \delta \in [-1,0]$. Therefore P_M is a NPiN-I of P by Theorem 3.5.

Conclusions

In this paper, we have discussed the notion of a *NPiN-I* in *KU*-algebras, and investigated several properties. We have considered relations between a *NN-I* and a *NPiN-I*. We have provided conditions for a *NN-I* to be a *NPiN-I*, and considered characterizations of a *NPiN-I*. We have established an extension property of a *NPiN-I* based on the negative indeterminacy membership function.

References

- [1] K. Atanassov, *Intuitionistic fuzzy sets*, Fuzzy Sets and Systems, **20** (1986), 87-96.
- [2] Y. B. Jun, K. J. Lee and S. Z. Song, *N-ideals of BCK/BCI-algebras*, J. Chungcheong Math. Soc., **22** (2009) 417-437.
- [3] M. Khan, S. Amis, F. Smarandache and Y. B. Jun, *Neutrosophic N-structures and their applications in semigroups*, Ann. Fuzzy Math. Inform., **14** (6) (2017) 583-598.
- [4] S. M. Mostafa, M. A. Abd-Elnaby and M. M. M. Yousef, *Fuzzy ideals of KU-algebras*, International Math Forum., **6** (63) (2011) 3139-3149.
- [5] S. M. Mostafa, R. A. K. Omar and O. W. Abd El-Baseer, *Sub implicative ideals of KU-algebras*, International Journal of Modern Science and Technology, **2** (5) (2017) 223-227.
- [6] M. Vasu and D. Ramesh Kumar, *Neutrosophic N-structures applied to KU-algebras*, Journal of Physics: Conference Series, **1724** (2021), 012016.
- [7] C. Prabpayak and U. Leerawat, *On ideals and congruence in KU-algebras*, Scientia Magna Journal, **5** (1) (2009), 54-57.
- [8] C. Prabpayak and U. Leerawat, *On isomorphisms of KU-algebras*, Scientia Magna Journal, **5** (3) (2009), 25-31.
- [9] F. Smarandache, *A Unifying field in logics: neutrosophic logic. neutrosophy, neutrosophic set, neutrosophic probability*, American Research Press, Rehoboth, NM, USA, (1999).
- [10] F. Smarandache, *Neutrosophic set-a generalization of the intuitionistic fuzzy set*, Int. J. Pure Appl. Math., **24** (2005) 287-297.
- [11] L. A. Zadeh, *Fuzzy sets*, Information and Control, **8** (1965), 338-353.