Strongly faint N_{nc} e-continuous function in N_{nc} topological spaces

Cite as: AIP Conference Proceedings **2364**, 020022 (2021); https://doi.org/10.1063/5.0062886 Published Online: 23 September 2021

V. Sudha, A. Vadivel and S. Tamilselvan

ARTICLES YOU MAY BE INTERESTED IN

Characterizations of quasi N_{nc} e-open (closed) functions in N_{nc} topological spaces AIP Conference Proceedings 2364, 020023 (2021); https://doi.org/10.1063/5.0062887

Neutrosophic Z-continuous maps and Z-irresolute maps

AIP Conference Proceedings 2364, 020020 (2021); https://doi.org/10.1063/5.0062905

Some topological operations and N_{nc} Z* continuity in N_{nc} topological spaces

AIP Conference Proceedings 2364, 020017 (2021); https://doi.org/10.1063/5.0063130

Strongly Faint $N_{nc}e$ -continuous Function in N_{nc} Topological Spaces

V. Sudha¹, A. Vadivel² and S. Tamilselvan³

¹Department of Mathematics, Periyar Arts College, Cuddalore, Tamil Nadu-607 001, India ²Department of Mathematics, Government Arts College (Autonomous), Karur- 639 005, India ³Mathematics Section (FEAT), Annamalai University, Annamalainagar, Tamil Nadu-608 002, India

> V. Sudha: sudhasowjimath@gmail.com A. Vadivel: avmaths@gmail.com S. Tamilselvan: tamil_au@yahoo.com

Abstract. A new class of functions, called strongly faint $N_{nc}e$ -continuous function, has been defined and studied. Relationships among strongly faint $N_{nc}e$ -continuous functions and $N_{nc}e$ -connected spaces, $N_{nc}e$ -normal spaces and $N_{nc}e$ -compact spaces are investigated. Furthermore, the relationships between strongly faint $N_{nc}e$ -continuous functions and graphs are also investigated.

Keywords and phrases: $N_{nc}\theta$ -open sets, $N_{nc}e$ -open sets, strongly $N_{nc}\theta$ -continuity, strongly faint $N_{nc}e$ -continuity. AMS (2000) subject classification: 54B05, 54C08, 54D10

INTRODUCTION

Smarandache's neutrosophic system have wide range of real time applications for the fields of Computer Science, Information Systems, Applied Matheamatics, Artifical Intelligence, Mechanics, decision making, Medicine, Electrical & Electronic, and Management Science etc [1, 2, 3, 4, 27, 28]. Smarandache [20] defined the Neutrosophic set on three component Neutrosophic sets (T-Truth, F-Falsehood, I-Indeterminacy). Salama and Alblowi [17] introduced Neutrosophic topological spaces (nts's). Lellis Thivagar et.al. [12] was given the geometric existence of N topology, which is a non-empty set equipped with N arbitrary topologies. Also in [13] the notion of N_n -open (closed) sets and N_n continuous in N neutrosophic crisp topological spaces are introduced. Al-Hamido et al. [5] explore the possibility of expanding the concept of neutrosophic crisp topological spaces into N-neutrosophic crisp topological spaces and investigate some of their basic properties. In 2020, Vadivel and co-author [23, 24] the concept of N-neutrosophic δ -open, N-neutrosophic δ -semiopen, N-neutrosophic δ -preopen and $N_{nc}e$ open sets are introduced. The first step of generalizing closed set was done by Levine [14] in 1970. Ekici [6, 7, 8, 9, 10, 11] introduced and studied a generalization of closed sets, e-closed sets and the related sets. Nasef and Noiri [16] introduce three classes of strong forms of faintly continuity namely: strongly faint semicontinuity, strongly faint precontinuity and strongly faint β -continuity. In 2009, Nasef [15] defined strong forms of faint continuity under the terminologies strongly faint α -continuity and strongly faint γ -continuity. In this paper using $N_{nc}e$ -open sets, strongly faint $N_{nc}e$ -continuity is introduced and studied with basic properties and theorems. Also a relationships between strongly faint $N_{nc}e$ -continuous functions and graphs are investigated.

PRELIMINARIES

The definitions of neutrosophic crisp set (in short, ncs) are studied in [18, 19]. In [5], N_{nc} -topological space (briefly, $N_{nc}ts$), N_{nc} -open sets ($N_{nc}os$), N_{nc} -closed sets ($N_{nc}cs$), N_{nc} interior of H (briefly, $N_{nc}int(H)$) and N_{nc} closure of H (briefly, $N_{nc}cl(H)$) are introduced. Also, N_{nc} -regular open [21] set (briefly, $N_{nc}ros$), N_{nc} -pre open set (briefly, $N_{nc}\mathcal{P}os$), N_{nc} -open set (briefly, $N_{nc}\mathcal{P}os$), N_{nc} -open set (briefly, $N_{nc}\mathcal{P}os$), N_{nc} -open set [22] (briefly, $N_{nc}\mathcal{P}os$), $N_{nc}\mathcal{P}os$, $N_{nc}\mathcal$

& $N_{nc}\gamma os$) is called an N_{nc} -regular (resp. N_{nc} -semi, N_{nc} -pre, N_{nc} - α , N_{nc} - β & N_{nc} - γ) closed set (briefly, $N_{nc}rcs$ (resp. $N_{nc}\mathcal{S}cs$, $N_{nc}\mathcal{P}cs$, $N_{nc}\alpha cs$, $N_{nc}\beta cs$ & $N_{nc}\gamma cs$)). $N_{nc}\theta$ -cluster (resp. $N_{nc}\delta$ -cluster) point, $N_{nc}\theta$ -closure (resp. $N_{nc}\delta$ -closure) denoted by $N_{nc}\theta cl(H)$ (resp. $N_{nc}\delta cl(H)$), $N_{nc}\theta$ -interior of H (briefly, $N_{nc}\delta cl(H)$), $N_{nc}\delta cl(H)$),

Strongly Faint $N_{nc}e$ -continuous Functions

Definition 3.1 A function $h:(U,N_{nc}\tau)\to (V,N_{nc}\sigma)$ is said to be

- (i) strongly faint $N_{nc}e$ (resp. N_{nc} semi, N_{nc} pre, $N_{nc}\beta$, $N_{nc}\alpha$ and $N_{nc}\gamma$)-continuous (briefly, $sfN_{nc}eCts$, $sfN_{nc}SCts$, $sfN_{nc}PCts$, $sfN_{nc}\beta Cts$, $sfN_{nc}\alpha Cts$ and $sfN_{nc}\gamma Cts$) if $\forall x \in U$ and each $N_{nc}eo$ (resp. $N_{nc}So$, $N_{nc}Po$, $N_{nc}\beta o$, $N_{nc}\alpha o$ and $N_{nc}\gamma o$) set M of V containing h(x), there exists a $N_{nc}\theta o$ set L of U containing x such that $h(L) \subseteq M$.
- (ii) strongly $N_{nc}e$ (resp. $N_{nc}\theta$)-continuous (briefly, $sN_{nc}eCts$ (resp. $sN_{nc}\theta Cts$)) if $h^{-1}(M)$ is $N_{nc}o$ in U for every $N_{nc}eo$ (resp. $N_{nc}\theta o$) set M of V.
- (iii) quasi $N_{nc}\theta$ -continuous (briefly. $qN_{nc}\theta Cts$), if $h^{-1}(M)$ is $N_{nc}\theta o$ in U for every $N_{nc}\theta o$ set M of V.

Theorem 3.1 For a function $h:(U,N_{nc}\tau)\to (V,N_{nc}\sigma)$, the statements

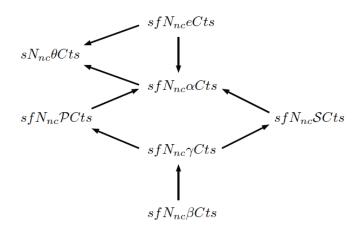
- (i) h is $sfN_{nc}eCts$,
- (ii) $h: (U, N_{nc}\tau) \to (V, N_{nc}\sigma)$ is $sN_{nc}eCts$,
- (iii) $h^{-1}(M)$ is $N_{nc}\theta o$ in $U \forall N_{nc}eo$ set M of V,
- (iv) $h^{-1}(M)$ is $N_{nc}\theta c$ in $U \forall N_{nc}ec$ set M of V

are equivalent.

Proof. (i) \Rightarrow (iii): Let M be an $N_{nc}eo$ set of V and $x \in h^{-1}(M)$. Since $h(x) \in M$ and h is $sfN_{nc}eCts$, there exists a $N_{nc}\theta o$ set L of U containing $x \ni h(L) \subseteq M$. It follows that $x \in L \in h^{-1}(M)$. Hence $h^{-1}(M)$ is $N_{nc}\theta o$ in U.

- (iii) \Rightarrow (i): Let $x \in X$ and M be an $N_{nc}eo$ set of V containing h(x). By (iii), $h^{-1}(M)$ is a $N_{nc}\theta o$ set containing x. Take $L = h^{-1}(M)$. Then $h(L) \subseteq M$. Thus h is $sfN_{nc}eCts$.
- (iii) \Rightarrow (iv): Let M be any $N_{nc}ec$ set of V. Since $Y \setminus M$ is an $N_{nc}eo$ set, by (iii), it follows that $h^{-1}(Y \setminus M) = X \setminus h^{-1}(M)$ is $N_{nc}\theta c$ in X.
- (iv) \Rightarrow (iii): Let M be an $N_{nc}eo$ set of V. Then $Y \setminus M$ is $N_{nc}ec$ in V. By (iv), $h^{-1}(Y \setminus M) = X \setminus h^{-1}(M)$ is $N_{nc}\theta c$ and thus $h^{-1}(M)$ is $N_{nc}\theta o$.
 - $(i) \Rightarrow (ii)$: Clear.

The relationships between this new class of functions are shown in the following diagram but reversible is not true.



Example 3.1 Let $X = \{a_1, b_1, c_1\} = Y$, ${}_{nc}\tau_1 = \{\phi_N, X_N, A, B, C\}$, ${}_{nc}\tau_2 = \{\phi_N, X_N, D\}$. $A = \langle \{a_1\}, \{\phi\}, \{b_1, c_1\} \rangle$, $B = \langle \{b_1\}, \{\phi\}, \{a_1, c_1\} \rangle$, $C = \langle \{a_1, b_1\}, \{\phi\}, \{c_1\} \rangle$, $D = \langle \{a_1, c_1\}, \{\phi\}, \{b_1\} \rangle$, then we have $2_{nc}\tau = \{\phi_N, X_N, A, B, C, D\}$ and ${}_{nc}\sigma_1 = \{\phi_N, Y_N, E\}$, ${}_{nc}\tau_2 = \{\phi_N, Y_N\}$, $E = \langle \{a_1, c_1\}, \{\phi\}, \{b_1\} \rangle$, then we have $2_{nc}\sigma = \{\phi_N, X_N, E\}$. Define $h : (X, 2_{nc}\tau) \to (Y, 2_{nc}\sigma)$ as an identity map, then h is $sf2_{nc}SCts$ (resp. $sf2_{nc}\alpha Cts$) but not $sf2_{nc}\gamma Cts$ (resp. $sf2_{nc}\varphi Cts$).

Example 3.2 Let $X = \{a_1, b_1, c_1, d_1\} = Y$, $_{nc}\tau_1 = \{\phi_N, X_N, A, B, C\}$, $_{nc}\tau_2 = \{\phi_N, X_N, D, E, F\}$. $A = \{a_1, \{\phi\}, \{b_1, c_1, d_1\}\}$, $B = \{c_1, \{\phi\}, \{a_1, b_1, d_1\}\}$, $C = \{a_1, c_1\}, \{\phi\}, \{b_1, d_1\}\}$, $D = \{b_1, d_1\}, \{\phi\}, \{a_1, c_1\}\}$, $E = \{a_1, b_1, d_1\}, \{\phi\}, \{c_1\}\}$, $E = \{b_1, c_1, d_1\}, \{\phi\}, \{a_1\}\}$, then we have $2_{nc}\tau = \{\phi_N, X_N, D, E, F, A, B, C\}$ and $c_{nc}\tau_1 = \{\phi_N, Y_N, G, H, I\}$, $c_{nc}\tau_2 = \{\phi_N, Y_N\}$, $G = \{a_1\}, \{\phi\}, \{b_1, c_1, d_1\}\}$, $H = \{b_1, d_1\}, \{\phi\}, \{a_1, c_1\}\}$, $I = \{a_1, b_1, d_1\}, \{\phi\}, \{c_1\}\}$, then we have $2_{nc}\tau = \{\phi_N, X_N, G, H, I\}$. Define $h : (X, 2_{nc}\tau) \to (Y, 2_{nc}\tau)$ as an identity map, then $h : sf2_{nc}\alpha Cts$ (resp. $s2_{nc}\theta Cts$) but not $sf2_{nc}eCts$ (resp. $sf2_{nc}eCts$).

Example 3.3 Let $X = \{a_1, b_1, c_1\}$, ${}_{nc}\tau_1 = \{\phi_N, X_N, A, B, C\}$, ${}_{nc}\tau_2 = \{\phi_N, X_N, D\}$. $A = \langle \{a_1\}, \{\phi\}, \{b_1, c_1\} \rangle$, $B = \langle \{b_1\}, \{\phi\}, \{a_1, c_1\} \rangle$, $C = \langle \{a_1, b_1\}, \{\phi\}, \{c_1\} \rangle$, $D = \langle \{a_1, c_1\}, \{\phi\}, \{b_1\} \rangle$, then we have $2_{nc}\tau = \{\phi_N, X_N, D, C, B, A\}$. Define $h : (X, 2_{nc}\tau) \to (X, 2_{nc}\tau)$ as an identity map, then h is $s2_{nc}\theta Cts$ but not $sf2_{nc}\alpha Cts$.

Example 3.4 Let $X = \{a_1, b_1, c_1\}$, $n_c \tau_1 = \{\phi_N, X_N, A, B, C\}$, $n_c \tau_2 = \{\phi_N, X_N, D\}$. $A = \langle \{a_1\}, \{\phi\}, \{b_1, c_1\} \rangle$, $B = \langle \{b_1\}, \{\phi\}, \{a_1, c_1\} \rangle$, $C = \langle \{a_1, b_1\}, \{\phi\}, \{c_1\} \rangle$, $D = \langle \{a_1, c_1\}, \{\phi\}, \{b_1\} \rangle$, then we have $2_{nc}\tau = \{\phi_N, X_N, C, D, A, B\}$ and $Y = \{a_1, b_1, c_1, d_1\}$, $n_c \sigma_1 = \{\phi_N, Y_N, G, H, I\}$, $n_c \tau_2 = \{\phi_N, Y_N\}$, $G = \langle \{a_1\}, \{\phi\}, \{b_1, c_1, d_1\} \rangle$, $H = \langle \{b_1, c_1\}, \{\phi\}, \{a_1, d_1\} \rangle$, $I = \langle \{a_1, b_1, c_1\}, \{\phi\}, \{d_1\} \rangle$, then we have $2_{nc}\sigma = \{\phi_N, X_N, G, H, I\}$. Define $h : (X, 2_{nc}\tau) \to (Y, 2_{nc}\sigma)$ as $h(a_1) = b_1$, $h(b_1) = a_1$, $h(c_1) = c_1$ & $h(d_1) = d_1$, then h is $sf2_{nc}\alpha Cts$ (resp. $sf2_{nc}\mathcal{P}Cts$) but not $sf2_{nc}\mathcal{S}Cts$ (resp. $sf2_{nc}\gamma Cts$).

Example 3.5 Let $X = \{a_1, b_1, c_1\} = Y$, ${}_{nc}\tau_1 = \{\phi_N, X_N, A, B, C\}$, ${}_{nc}\tau_2 = \{\phi_N, X_N, D, E, F\}$. $A = \{\{a_1\}, \{\phi\}, \{b_1, c_1\}\}$, $B = \{\{b_1\}, \{\phi\}, \{a_1, c_1\}\}$, $C = \{\{a_1, b_1\}, \{\phi\}, \{c_1\}\}\}$, $D = \{\{c_1\}, \{\phi\}, \{a_1, b_1\}\}\}$, $E = \{\{a_1, c_1\}, \{\phi\}, \{a_1\}\}\}$, then we have $2_{nc}\tau = \{\phi_N, X_N, D, E, F, A, B, C\}$ and ${}_{nc}\sigma_1 = \{\phi_N, Y_N, E\}$, ${}_{nc}\tau_2 = \{\phi_N, Y_N\}$, $E = \{\{a_1, c_1\}, \{\phi\}, \{b_1\}\}\}$, then we have $2_{nc}\sigma = \{\phi_N, X_N, E\}$. Define $h : (X, 2_{nc}\tau) \to (Y, 2_{nc}\sigma)$ as an identity map, then h is $sf2_{nc}\gamma Cts$ but not $sf2_{nc}\beta Cts$.

Theorem 3.2 If a function $h: (U, N_{nc}\tau) \to (V, N_{nc}\sigma)$ is $sfN_{nc}eCts$ function, then it is $sN_{nc}eCts$.

If $(U, N_{nc}\tau)$ is a regular space, we have $N_{nc}\tau = N_{nc}\tau_{\theta}$ and the next theorem follows immediately.

Theorem 3.3 Let $(U, N_{nc}\tau)$ be a regular space. Then for a function $h:(U, N_{nc}\tau) \to (V, N_{nc}\sigma)$ the following properties are equivalent:

- (i) h is $sN_{nc}eCts$.
- (ii) h is $sfN_{nc}eCts$.

Definition 3.2 A $N_{nc}ts$ $(V, N_{nc}\sigma)$ is said to be a $N_{nc}T_e$ -space if every $N_{nc}eo$ set of $(V, N_{nc}\sigma)$ is $N_{nc}o$.

Definition 3.3 A $N_{nc}ts\ X$ is said to be N_{nc} submaximal if each N_{nc} dense set of X is $N_{nc}o$ in X and N_{nc} extremely disconnected (briefly $N_{nc}ed$) if the N_{nc} closure of each $N_{nc}o$ set of X is $N_{nc}o$ in X.

Theorem 3.4 Let $h:(U,N_{nc}\tau)\to (V,N_{nc}\sigma)$ be a function and let $(V,N_{nc}\sigma)$ be a N_{nc} submaximal, $N_{nc}ed$ and $N_{nc}T_e$ -space. Then the following

- (i) h is $sfN_{nc}\alpha Cts$,
- (ii) h is $sfN_{nc}\gamma Cts$,
- (iii) h is $sfN_{nc}SCts$.
- (iv) h is sfN_{nc} $\mathcal{P}Cts$.
- (v) h is $sfN_{nc}\beta Cts$.
- (vi) h is $sN_{nc}\theta Cts$.
- (vii) h is $sfN_{nc}eCts$

are equivalent.

Proof. We have (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (v) \Rightarrow (vi) \Rightarrow (i) (since *U* is N_{nc} submaximal and $N_{nc}ed$, then $N_{nc}\sigma = N_{nc}\alpha OS(Y) = N_{nc}\gamma OS(Y) = N_{nc}SOS(Y) = N_{nc}\beta OS(Y)$.

(vi) \Leftrightarrow (vii): This follows from the fact that if $(V, N_{nc}\sigma)$ is $N_{nc}T_e$ -space, then $N_{nc}\sigma = N_{nc}eOS(Y)$.

Theorem 3.5 If $h:(U,N_{nc}\tau)\to (V,N_{nc}\sigma)$ is $sfN_{nc}eCts$ and $g:(V,N_{nc}\sigma)\to (W,N_{nc}\psi)$ is $N_{nc}eIrr$, then $g\circ h:(U,N_{nc}\tau)\to (W,N_{nc}\psi)$ is $sfN_{nc}eCts$.

Proof. Let $G \in N_{nc}eOS(Z)$. Then $g^{-1}(G) \in N_{nc}eOS(Y)$ and hence $(g \circ h)^{-1}(G) = h^{-1}(g^{-1}(G))$ is $N_{nc}\theta o$ in U. Therefore $g \circ h$ is $sfN_{nc}eCts$.

Theorem 3.6 The functions $h: (U, N_{nc}\tau) \to (V, N_{nc}\sigma)$ and $g: (V, N_{nc}\sigma) \to (W, N_{nc}\psi)$ are hold for

(i) If both h and g are $sfN_{nc}eCts$, then the composition $g \circ h : (U, N_{nc}\tau) \to (W, N_{nc}\psi)$ is $sfN_{nc}eCts$.

- (ii) If $h \ sfN_{nc}eCts$ and g is an $N_{nc}eIrr$, then $g \circ h$ is $sN_{nc}eCts$.
- (iii) If $h \ sfN_{nc}eCts$ and g is a $N_{nc}eCts$, then $g \circ h$ is $sN_{nc}\theta Cts$.
- (iv) If h is quasi $N_{nc}\theta Cts$ and g is $sfN_{nc}eCts$, then $g \circ h$ is $sfN_{nc}eCts$.
- (v) If h is $sN_{nc}\theta Cts$ and g is $sfN_{nc}eCts$, then $g \circ h$ is $sfN_{nc}eCts$.

Definition 3.4 A $N_{nc}\theta$ -frontier of a subset A of $(U, N_{nc}\tau)$ is $N_{nc}\theta Fr(A) = N_{nc}\theta cl(A) \cap N_{nc}\theta cl(X\backslash A)$.

Theorem 3.7 Let $(U, N_{nc}\tau)$ be a N_{nc} regular space. Then the set of all points $x \in X$ in which a function $h: (U, N_{nc}\tau) \to (V, N_{nc}\sigma)$ is not $sfN_{nc}eCts$ at x is identical with the union of the $N_{nc}\theta$ -frontier of the inverse images of $N_{nc}eo$ sets of V containing h(x).

Proof. Necessity. Suppose that h is not $sfN_{nc}eCts$ at $x \in X$. Then there exists a $N_{nc}eo$ set M of V containing $h(x) \ni h(L)$ is not a subset of $M \forall L \in \tau_{\theta}$ containing x. Hence we have $L \cap (X \setminus h^{-1}(M)) \neq \phi \forall L \in N_{nc}\tau_{\theta}$ containing x. Since U is N_{nc} regular, it follows that $x \in N_{nc}\theta cl(X \setminus h^{-1}(M))$. We have that, $x \in h^{-1}(M) \subseteq N_{nc}\theta cl(h^{-1}(M))$. This means that $x \in N_{nc}\theta Fr(h^{-1}(M))$. Sufficiency. Suppose that $x \in N_{nc}\theta Fr(h^{-1}(M))$ for some $M \in eO(Y, h(x))$. Now, we assume that h is $sfN_{nc}eCts$ at $x \in X$. Then $\exists L \in N_{nc}\tau_{\theta}$ containing $x \ni h(L) \subseteq M$. Therefore, we have $L \subseteq h^{-1}(M)$ and hence $x \in N_{nc}\theta int(h^{-1}(M)) \subseteq X \setminus N_{nc}\theta Fr(h^{-1}(M))$. This is a contradiction. This means that h is not $sfN_{nc}eCts$.

Definition 3.5

- (i) A space $(U, N_{nc}\tau)$ is said to be $N_{nc}e$ -connected (resp. $N_{nc}\theta$ -connected & N_{nc} -connected) if U cannot be written as the union of two nonempty disjoint $N_{nc}eo$ (resp. $N_{nc}\theta o$ & $N_{nc}o$) sets.
- (ii) A subset K of a $(U, N_{nc}\tau)$ space is said to be, $N_{nc}e$ -compact (resp. $N_{nc}\theta$ -compact) relative to $(U, N_{nc}\tau)$, if for every cover of K by $N_{nc}eo$ (resp. $N_{nc}\theta o$) sets has a finite subcover. A $N_{nc}ts$ $(U, N_{nc}\tau)$ is $N_{nc}e$ -compact (resp. $N_{nc}\theta$ -compact) relative to $(U, N_{nc}\tau)$.

It should be mentioned that $N_{nc}\theta$ -connected is equivalent with N_{nc} connected.

Theorem 3.8 If $h:(U,N_{nc}\tau) \to (V,N_{nc}\sigma)$ is a $sfN_{nc}eCts$ surjection function and $(U,N_{nc}\tau)$ is a $N_{nc}\theta$ -connected space, then V is an $N_{nc}e$ -connected space.

Proof. Assume that $(V, N_{nc}\sigma)$ is not $N_{nc}e$ -connected. Then there exist nonempty $N_{nc}eo$ sets M_1 and M_2 of V such that $M_1 \cap M_2 = \phi$ and $M_1 \cup M_2 = Y$. Hence we have $h^{-1}(M_1) \cap h^{-1}(M_2) = \phi$ and $h^{-1}(M_1) \cup h^{-1}(M_2) = X$. Since h is surjective, $h^{-1}(M_1)$ and $h^{-1}(M_2)$ are nonempty subsets of U. Since h is $sfN_{nc}eCts$, $h^{-1}(M_1)$ and $h^{-1}(M_2)$ are $N_{nc}\theta o$ sets of U. Therefore $(U, N_{nc}\tau)$ is not $N_{nc}\theta o$ -connected. This is a contradiction and hence $(V, N_{nc}\sigma)$ is $N_{nc}e$ -connected.

Theorem 3.9 If $h:(U,N_{nc}\tau)\to (V,N_{nc}\sigma)$ is a $sfN_{nc}eCts$, then h(H) is $N_{nc}e$ -compact relative to $(V,N_{nc}\sigma)$ for each subset H which is $N_{nc}\theta$ -compact relative to $(U,N_{nc}\tau)$.

Proof. Let $\{M_i: i \in I\}$ be any cover of h(H) by $N_{nc}eo$ sets. For each $x \in H$, $\exists i_x \in I$, $\ni h(x) \in M_{i_x}$. Since h is $sfN_{nc}eCts$, $\exists L_x \in \tau_\theta$ containing $x \ni h(L_x) \subseteq M_{i_x}$. The family $\{L_x: x \in H\}$ is a cover of H by $N_{nc}\theta o$ sets of $(U, N_{nc}\tau)$. Since H is $N_{nc}\theta$ -compact relative to $(U, N_{nc}\tau)$, there exists a N_{nc} finite subset H_0 of $H \ni H \subseteq \bigcup \{L_x: x \in H_0\}$. Therefore, we obtain $h(H) \subseteq \bigcup \{h(L_x): x \in H_0\} \subseteq \bigcup \{M_{i_x}: x \in H_0\}$. Therefore, h(H) is $N_{nc}e$ -compact relative to $(V, N_{nc}\sigma)$.

Theorem 3.10 The surjective $sfN_{nc}eCts$ image of a $N_{nc}\theta$ -compact space is $N_{nc}e$ -compact.

Proof. Let $h:(U,N_{nc}\tau)\to (V,N_{nc}\sigma)$ be a $sfN_{nc}eCts$ function from a $N_{nc}\theta$ -compact space U onto a space V. Let $\{G_i:i\in I\}$ be any $N_{nc}eo$ cover of V. Since h is $sfN_{nc}eCts$, $\{h^{-1}(G_i):i\in I\}$ is a $N_{nc}\theta o$ cover of U. Since U is $N_{nc}\theta c$ -compact, there exists a N_{nc} finite subcover $\{h^{-1}(G_i):i=1,2,\cdots,n\}$ of U. Then it follows that $\{G_i:i=1,2,\cdots,n\}$ is a finite subfamily which cover V. Hence V is $N_{nc}e$ -compact.

Separation Axioms

Definition 4.1 A $N_{nc}ts$ $(U, N_{nc}\tau)$ is said to be:

- (i) $N_{nc}e-T_1$ (resp. $N_{nc}\theta-T_1$) if for each pair of distinct points l and m of U, there exists $N_{nc}eo$ (resp. $N_{nc}\theta o$) sets L and M containing l and m, respectively such that $m \notin L$ and $l \notin M$.
- (ii) $N_{nc}e^{-T_2}$ (resp. $N_{nc}\theta^{-T_2}$) if for each pair of distinct points l and m in U, there exists disjoint $N_{nc}eo$ (resp. $N_{nc}\theta_{o}$) sets L and M in U such that $l \in L$ and $m \in M$.

Remark 4.1 N_{nc} Hausdorff $\Leftrightarrow N_{nc}\theta$ - T_1 .

Theorem 4.1 If $h:(U, N_{nc}\tau) \to (V, N_{nc}\sigma)$ is $sfN_{nc}eCts$ injection and V is an $N_{nc}e-T_1$ space, then U is a $N_{nc}\theta-T_1$ (or N_{nc} Hausdorff) space.

Proof. Suppose that V is $N_{nc}e$ - T_1 . For any distinct points l and m in U, then $\exists L, M \in N_{nc}e$ 0 $(Y) \ni h(l) \in L$, $h(m) \notin L$, $h(l) \notin M$ & $h(m) \in M$. Since h is $sfN_{nc}e$ Cts, $h^{-1}(L)$ & $h^{-1}(M)$ are $N_{nc}\theta$ 0 subsets of $(U, N_{nc}\tau) \ni l \in h^{-1}(L)$, $m \notin h^{-1}(L)$, $l \notin h^{-1}(M)$ & $m \in h^{-1}(M)$. This shows that U is $N_{nc}\theta$ - T_1 (equivalently N_{nc} Hausdorff by Remark 3).

Theorem 4.2 If $h:(U,N_{nc}\tau)\to (V,N_{nc}\sigma)$ is $sfN_{nc}eCts$ injection and V is an $N_{nc}e-T_2$ space, then U is a $N_{nc}\theta-T_2$ space.

Proof. Suppose that V is $N_{nc}e^{-T_2}$. For any pair of distinct points l & m in U, there exist disjoint $N_{nc}eo$ sets L & M in V such that $h(l) \in L \& h(m) \in M$. Since h is $sfN_{nc}eCts$, $h^{-1}(L)\&h^{-1}(M)$ are $N_{nc}\theta o$ in U containing l& m, respectively. Therefore, $h^{-1}(L) \cap h^{-1}(M) = \phi$ because $L \cap M = \phi$. This shows that U is $N_{nc}\theta \cdot T_2$.

Theorem 4.3 If $h, g: (U, N_{nc}\tau) \to (V, N_{nc}\sigma)$ are $sfN_{nc}eCts$ functions and V is $N_{nc}e-T_2$, then $E = \{e \in X : h(e) = g(e)\}$ is $N_{nc}c$ in U.

Proof. Suppose that $e \notin E$. Then $h(e) \neq g(e)$. Since V is $N_{nc}e-T_2$, $\exists L \in N_{nc}eO(Y, h(e)) \& M \in N_{nc}eO(Y, g(e)) \ni L \cap M = \emptyset$. Since h & g are $sfN_{nc}eCts$, there exist a $N_{nc}\theta o$ set N of U containing e and a $N_{nc}\theta o$ set O of O containing $e \ni h(N) \subseteq L \& g(O) \subseteq M$. Set $O = N \cap O$, then $O \cap E = \emptyset$ with $O \cap E = \emptyset$ and hence $O \cap E \cap E \cap E$. Then $O \cap E \cap E \cap E$ and thus $O \cap E \cap E$ in $O \cap E \cap E$ and thus $O \cap E \cap E$ in $O \cap E$.

Definition 4.2 A space $(U, N_{nc}\tau)$ is said to be:

- (i) $N_{nc}\theta$ regular (briefly. $N_{nc}\theta Reg$ (resp. $N_{nc}e$ regular (briefly $N_{nc}eReg$))) if $\forall N_{nc}\theta c$ (resp. $N_{nc}ec$) set C and each point $x \notin C$, there exist disjoint $N_{nc}\theta o$ (resp. $N_{nc}eo$) sets $L\&M \ni C \subseteq L$ and $x \in M$.
- (ii) $N_{nc}\theta$ -normal (briefly. $N_{nc}\theta Nor$ (resp. $N_{nc}e$ -normal (briefly. $N_{nc}eNor$))) if for any pair of disjoint $N_{nc}\theta c$ (resp. $N_{nc}ec$) subsets $C_1 \& C_2$ of U, there exist disjoint $N_{nc}\theta c$ (resp. $N_{nc}eo$) sets $L\& M \ni C_1 \subseteq L \& C_2 \subseteq M$.

Definition 4.3 A function $h:(U,N_{nc}\tau)\to (V,N_{nc}\sigma)$ is called $N_{nc}\theta e$ -open (briefly, $N_{nc}\theta eO$) if $h(L)\in N_{nc}eOS(Y)$ for each $L\in N_{nc}\tau_{\theta}$.

Theorem 4.4 If h is $sfN_{nc}eCts \& N_{nc}\theta eO$ injection from a $N_{nc}\theta Reg$ space $(U, N_{nc}\tau)$ onto a space $(V, N_{nc}\sigma)$, then $(V, N_{nc}\sigma)$ is $N_{nc}eReg$.

Proof. Let C be an $N_{nc}ec$ set of V and $y \notin C$. Take y = h(x). Since h is $sfN_{nc}eCts$, $h^{-1}(C)$ is $N_{nc}\theta c$ in $U \ni h^{-1}(y) = x \notin h^{-1}(C)$. Take $D = h^{-1}(C)$. We have $x \notin D$. Since U is $N_{nc}\theta Reg$, then there exist disjoint $N_{nc}\theta c$ sets L & M in $U \ni D \subseteq L \& x \in M$. We obtain that $C = h(D) \subseteq h(L) \& y = h(x) \in h(L) \ni h(L) \& h(M)$ are disjoint $N_{nc}ec$ sets. This shows that V is $N_{nc}eReg$.

Theorem 4.5 If h is $sfN_{nc}eCts \& N_{nc}\theta eO$ injection from a $N_{nc}\theta Nor$ space $(U, N_{nc}\tau)$ onto a space $(V, N_{nc}\sigma)$, then V is $N_{nc}eNor$.

Proof. Let F_1 & F_2 be disjoint $N_{nc}ec$ sets of V. Since h is $sfN_{nc}eCts$, $h^{-1}(F_1)$ & $h^{-1}(F_2)$ are $N_{nc}\theta c$ sets. Take $L = h^{-1}(F_1)$ & $M = h^{-1}(F_2)$. We have $L \cap M = \phi$. Since U is $N_{nc}\theta Nor$, there exist disjoint $N_{nc}\theta o$ sets C & $D \ni L \subseteq C$ & $M \subseteq D$. We obtain that $F_1 = h(L) \subseteq h(C)$ & $F_2 = h(M) \subseteq h(D) \ni h(C)$ & h(D) are disjoint $N_{nc}eo$ sets. Thus, V is $N_{nc}eNor$.

Definition 4.4 A function $h:(U,N_{nc}\tau)\to (V,N_{nc}\sigma)$, the subset $\{(g,h(g)):g\in X\}\subseteq X\times Y$ is called the graph of h and is denoted by $N_{nc}G(h)$.

Definition 4.5 A graph $N_{nc}G(h)$ of a function $h:(U,N_{nc}\tau)\to (V,N_{nc}\sigma)$ is said to be $N_{nc}(e,\theta)$ -closed if for each $(l,m)\in (X\times Y)\backslash G(h)$, there exist a $N_{nc}\theta o$ L set of U containing l and an $N_{nc}eo$ set M of V containing $m\ni (L\times M)\cap G(h)=\phi$.

Lemma 4.1 A graph $N_{nc}G(h)$ of a function $h:(U,N_{nc}\tau)\to (V,N_{nc}\sigma)$ is $N_{nc}(e,\theta)$ -closed in $X\times Y$ iff for each $(l,m)\in (X\times Y)\backslash N_{nc}G(h)$, there exist a $N_{nc}\theta o$ set L of U containing l and an $N_{nc}eo$ set M of V containing $m\ni h(L)\cap M=\phi$.

Theorem 4.6 If $h:(U,N_{nc}\tau)\to (V,N_{nc}\sigma)$ is $sfN_{nc}eCts$ function and $(V,N_{nc}\sigma)$ is $N_{nc}e-T_2$, then $N_{nc}G(h)$ is $N_{nc}(e,\theta)$ -closed.

Proof. Let $(l, m) \in (X \times Y) \setminus N_{nc}G(h)$, then $h(l) \notin m$. Since V is $N_{nc}e$ - T_2 , there exist disjoint $N_{nc}eo$ sets L & M in $V \ni h(l) \in L \& m \in M$. Since h is $sfN_{nc}eCts$, $h^{-1}(L)$ is $N_{nc}eo$ in U containing l. Take $N = h^{-1}(L)$. We have $h(N) \subseteq L$. Therefore, we obtain $h(N) \cap M = \phi$. This shows that $N_{nc}G(h)$ is $N_{nc}(e, \theta)$ -closed.

Theorem 4.7 Let $h:(U,N_{nc}\tau)\to (V,N_{nc}\sigma)$ has an $N_{nc}(e,\theta)$ -closed graph $N_{nc}G(h)$. If h is a $sfN_{nc}eCts$ injection, then $(U,N_{nc}\tau)$ is $N_{nc}\theta$ - T_2 .

Proof. Let l & m be any two distinct points of U. Then since h is injective, we have $h(l) \ne h(m)$. Then, we have $(l, h(m)) \in (X \times Y) \setminus N_{nc}G(h)$. By Lemma 3, there exist a $N_{nc}\theta o$ set L of U and an $N_{nc}eo$ set M of $V \ni (l, h(m)) \in L \times M$ & $h(L) \cap M = \phi$. Hence $L \cap h^{-1}(M) = \phi \& m \notin L$. Since h is $sfN_{nc}eCts$, there exists a $N_{nc}\theta o$ set N of U containing $m \ni h(N) \subseteq N$. Therefore, we have $h(L) \cap h(N) = \phi$. Since h is injective, we obtain $L \cap N = \phi$. This implies that $(U, N_{nc}\tau)$ is $N_{nc}\theta \cap T_2$.

Definition 4.6 A $N_{nc}ts$ U is said to be $N_{nc}e$ -Alexandroff if every finite intersection of $N_{nc}eo$ sets is $N_{nc}eo$.

Theorem 4.8 Let $(V, N_{nc}\sigma)$ be $N_{nc}e$ -Alexandroff. If $h:(U, N_{nc}\tau) \to (V, N_{nc}\sigma)$ has the $N_{nc}(e, \theta)$ -closed graph, then h(H) is $N_{nc}ec$ in $(V, N_{nc}\sigma)$ for each subset H which is $N_{nc}\theta$ -compact relative to U.

Proof. Suppose that $m \notin h(H)$. Then $(l, m) \setminus N_{nc}G(h)$ for each $l \in H$. Since $N_{nc}G(h)$ is $N_{nc}(e, \theta)$ -closed, there exist a $N_{nc}\theta o$ L_l set of U containing l and $N_{nc}eo$ M_l set of V containing $m \ni h(L_l) \cap M_l = \phi$, by Lemma 3. The family $\{L_l: l \in H\}$ is a cover of H by $N_{nc}\theta o$ sets. Since H is $N_{nc}\theta$ -compact relative to $(U, N_{nc}\tau)$, there exists a N_{nc} finite subset H_0 of $H \ni H \subseteq \bigcup \{L_l: l \in H_0\}$. Set $M = \bigcap \{M_l: l \in H_0\}$. Then M is a $N_{nc}eo$ set in V containing m. Therefore, we have $h(H) \cap M \subseteq \bigcap_{l \in H_0} h(L_l) \cap M \subseteq \bigcap_{l \in H_0} (h(L_l) \cap M) = \phi$. It follows that $m \notin N_{nc}ecl(h(H))$. Therefore, h(H) is $N_{nc}ecl(h(H))$.

Corollary 4.1 Let $(V, N_{nc}\sigma)$ be $N_{nc}e$ -Alexandroff. If $h:(U, N_{nc}\tau) \to (V, N_{nc}\sigma)$ is $sfN_{nc}eCts$ and $(V, N_{nc}\sigma)$ is $N_{nc}e-T_2$, then h(H) is $N_{nc}ec$ in $(V, N_{nc}\sigma)$ for each subset H which is $N_{nc}e$ -compact relative to (X, τ) .

CONCLUSION

In this work, we have introduced some new class of functions, called strongly faint $N_{nc}e$ -continuous. Also the relationships among strongly faint $N_{nc}e$ -continuous function and $N_{nc}e$ -connected, normal and compact spaces are investigated. Furthermore, the relationships between strongly faint $N_{nc}e$ -continuous functions and graphs are also investigated.

REFERENCES

- [1] M. Abdel-Basset, V. Chang, M. Mohamed and F. Smarandche, *A Refined Approach for Forecasting Based on Neutrosophic Time Series*, Symmetry, **11** (4) (2019) 457.
- [2] M. Abdel-Basset, G. Manogaran, A. Gamal and V. Chang, A Novel Intelligent Medical Decision Support Model Based on Soft Computing and IoT, IEEE Internet of Things Journal, (2019).
- [3] M. Abdel-Basset, and M. Mohamed, A novel and powerful framework based on neutrosophic sets to aid patients with cancer, Future Generation Computer Systems, 98 (2019) 144-153.
- [4] M. Abdel-Basset, A. Gamal, G. Manogaran and H. V. Long *A novel group decision making model based on neutrosophic sets for heart disease diagnosis*, Multimedia Tools and Applications, (2019) 1-26.
- [5] R. K. Al-Hamido, T. Gharibah, S. Jafari and F. Smarandache, *On neutrosophic crisp topology via N-topology*, Neutrosophic Sets and Systems, **23** (2018), 96-109.
- [6] Erdal Ekici, On e-open sets, \mathcal{DP}^* -sets and $\mathcal{DP}\epsilon^*$ -sets and decomposition of continuity, The Arabian Journal for Science and Engineering, **33** (2008) 271-282.
- [7] Erdal Ekici, *On a-open sets, A*-sets and decomposition of continuity and super continuity*, Annales Univ. Sci. Budapest, **51** (2008) 39-51.
- [8] Erdal Ekici, New forms of contra continuity, Carpathian J. Math., 24 (1) (2008) 37-45.
- [9] Erdal Ekici, On e^* -open sets and $(\mathcal{D}, \mathcal{S})^*$ -sets, Math. Moravica, 13 (1) (2009) 29-36.
- [10] Erdal Ekici, Some generalizations of almost contra-super-continuity, Filomat, 21 (2) (2007) 31-44.
- [11] Erdal Ekici, A note on a-open sets and e*-sets, Filomat, **21** (1) (2008) 89-96.
- [12] M. Lellis Thivagar, V. Ramesh, M D. Arockia, *On new structure of N-topology*, Cogent Mathematics (Taylor and Francis), **3** (2016):1204104.
- [13] M. Lellis Thivagar, S. Jafari, V. Antonysamy and V.Sutha Devi, *The ingenuity of neutrosophic topology via N-topology*, Neutrosophic Sets and Systems, **19** (2018), 91-100.
- [14] N. Levine, Generalized closed sets in topology, Rend. circ. mat. palermo, 19 (2) (1970) 89-96.
- [15] A. A. Nasef, *Recent progress in the theory of faint continuity*, Mathematical and Computer Modelling, **49** (2009) 536-541.
- [16] A. A. Nasef and T. Noiri, Strong forms of faint continuity, Mam, Fac. Sci. Kochi Univ. Ser. A. Math, 19 (1998) 21-28.
- [17] A. A. Salama and S. A. Alblowi, *Generalized neutrosophic set and generalized neutrosophic topological spaces*, Journal computer sci. engineering, **2** (7) (2012), 31-35.
- [18] A. A. Salama, F. Smarandache and V. Kroumov, *Neutrosophic crisp sets and neutrosophic crisp topological spaces*, Neutrosophic Sets and Systems, **2** (2014), 25-30.
- [19] A. A. Salama and F. Smarandache, Neutrosophic crisp set theory, Educational Publisher, Columbus, Ohio, USA, 2015.

- [20] F. Smarandache, *Neutrosophy and neutrosophic logic*, First International Conference on Neutrosophy, Neutrosophic Logic, Set, Probability, and Statistics, University of New Mexico, Gallup, NM 87301, USA (2002).
- [21] A. Vadivel and C. John Sundar, γ -Open Sets in N_{nc} -Topological Spaces, Advances in Mathematics: Scientific Journal, **9** (4) (2020), 2197-2202.
- [22] A. Vadivel and C. John Sundar, $N_{nc}\beta$ -open sets, Advances in Mathematics: Scientific Journal, **9** (4) (2020), 2203-2207.
- [23] A. Vadivel and C. John Sundar, $N_{nc}\delta$ -open sets, Submitted.
- [24] A. Vadivel and P. Thangaraja, e-open sets N_{nc} Topological Spaces, Submitted.
- [25] A. Vadivel and P. Thangaraja, e-continuous and somewhat e continuity in N_{nc} Topological Spaces, Submitted.
- [26] A. Vadivel and P. Thangaraja, Characterizations of completely $N_{nc}e$ (weakly $N_{nc}e$) irresolute functions via $N_{nc}e$ -open sets, Submitted.
- [27] V. Venkateswaran Rao and Y. Srinivasa Rao, *Neutrosophic Pre-open sets and Pre-closed sets in Neutrosophic Topology*, International Journal of chemTech Research, **10** (10) 449-458.
- [28] F. Wadei, Al-Omeri and Saeid Jafari, *Neutrosophic pre-continuity multifunctions and almost pre-continuity multifunctions*, Neutrosophic Sets and Systems, **27** (2019) 53-69.