Neutrosophic e-open maps, neutrosophic e-closed maps and neutrosophic e-homeomorphisms in neutrosophic topological spaces

Cite as: AIP Conference Proceedings **2364**, 020016 (2021); https://doi.org/10.1063/5.0062880 Published Online: 23 September 2021

A. Vadivel, P. Thangaraja and C. John Sundar

ARTICLES YOU MAY BE INTERESTED IN

Neutrosophic Z-continuous maps and Z-irresolute maps

AIP Conference Proceedings 2364, 020020 (2021); https://doi.org/10.1063/5.0062905

Some topological operations and N_{nc} Z* continuity in N_{nc} topological spaces

AIP Conference Proceedings 2364, 020017 (2021); https://doi.org/10.1063/5.0063130

On N_{nc} Z*-open and N_{nc} Z*-closed functions

AIP Conference Proceedings 2364, 020018 (2021); https://doi.org/10.1063/5.0063132

Neutrosophic *e*-Open Maps, Neutrosophic *e*-Closed Maps and Neutrosophic *e*-Homeomorphisms in Neutrosophic Topological Spaces

A. Vadivel, ^{1, 2, a)} P. Thangaraja, ^{2, b)} and C. John Sundar^{2, c)}

¹⁾PG and Research Department of Mathematics, Government Arts College (Autonomous), Karur - 639 005, India.

²⁾Department of Mathematics, Annamalai University, Annamalai Nagar - 608 002, India.

^{a)}Corresponding author: avmaths@gmail.com ^{b)}Electronic mail: thangarajap1991@gmail.com ^{c)}Electronic mail: johnphdau@hotmail.com

Abstract. In this article, we introduce the concept of neutrosophic e-open and neutrosophic e-closed mappings in neutrosophic topological spaces and studied some of their related properties. Further the work is extended to neutrosophic e-homeomorphism, neutrosophic e-Completely homeomorphism and neutrosophic $eT_{\frac{1}{2}}$ -space in neutrosophic topological spaces and establishes some of their related attributes.

Keywords and phrases: neutrosophic *e*-open map, neutrosophic *e*-closed map, $NeT_{\frac{1}{2}}$ -space, neutrosophic *e*-homeomorphism, neutrosophic *e*-C homeomorphism.

AMS (2000) subject classification: 03E72, 54A10, 54A40, 54C05.

INTRODUCTION

The concept of fuzzy set (briefly, fs) was introduced by Lotfi Zadeh in 1965 [20], then Chang depended the fuzzy set to introduce the concept of fuzzy topological space (briefly, fts) in 1968 [5]. After that the concept of fuzzy set was developed into the concept of intutionistic fuzzy set (briefly, Ifs) by Atanassov in 1983 [2, 3, 4], the intutionistic fuzzy set gives a degree of membership and a degree of non-membership functions. Cokor in 1997 [5] relied on intutionistic fuzzy set to introduced the concept of intutionistic fuzzy topological space (briefly, Ifts). In 2005 Smaradache [13] study the concept of neutrosophic set (briefly, $N_s s$). After that and as developed the term of neutrosophic set, Salama has studied neutrosophic topological space (briefly, $N_s ts$) and many of its applications [8, 9, 10, 11]. In 2012 Salama and Alblowi defined neutrosophic topological space [8]. The neutrosophic closed sets and neutrosophic continuous functions were introduced by Salama et al. [10] in 2014. Saha [14] defined δ -open sets in topological spaces. Vadivel et al. in [18] introduced δ -open sets in a neutrosophic topological space. In 2008, Ekici [6] introduced the notion of e-open sets in a general topology. In 2014, Seenivasan et al. [12] introduced fuzzy e-open sets in a fuzzy topological space along with fuzzy e-continuity. Vadivel et al. [19] studied fuzzy e-open sets in intuitionistic fuzzy topological spaces and also the work is extended to $N_s e$ -homeomorphism, $N_s e$ -C homeomorphism and $N_s e$ -closed mappings in neutrosophic topological spaces and also the work is extended to $N_s e$ -homeomorphism, $N_s e$ -C homeomorphism and $N_s e$ -closed in neutrosophic topological spaces and obtain some of its basic properties.

PRELIMINARIES

The needful basic definitions & properties of neutrosophic topological spaces are discussed in this section.

Definition 2.1 [8] Let Y be a non-empty set. A neutrosophic set (briefly, $N_s s$) L is an object having the form $L = \{\langle y, \mu_L(y), \sigma_L(y), \nu_L(y) \rangle : y \in Y\}$ where $\mu_L \to [0,1]$ denote the degree of membership function, $\sigma_L \to [0,1]$ denote the degree of indeterminacy function and $\nu_L \to [0,1]$ denote the degree of non-membership function respectively of each element $y \in Y$ to the set L and $0 \le \mu_L(y) + \sigma_L(y) + \nu_L(y) \le 3$ for each $y \in Y$.

Remark 2.1 [8] A $N_s s L = \{\langle y, \mu_L(y), \sigma_L(y), \nu_L(y) \rangle : y \in Y\}$ can be identified to an ordered triple $\langle y, \mu_L(y), \sigma_L(y), \nu_L(y) \rangle$ in [0, 1] on Y.

Definition 2.2 [8] Let Y be a non-empty set & the $N_s s$'s L & M in the form $L = \{\langle y, \mu_L(y), \sigma_L(y), \nu_L(y) \rangle : y \in Y \}$, $M = \{\langle y, \mu_M(y), \sigma_M(y), \nu_M(y) \rangle : y \in Y \}$, then

(i) $0_N = \langle y, 0, 0, 1 \rangle$ and $1_N = \langle y, 1, 1, 0 \rangle$,

- (ii) $L \subseteq M$ iff $\mu_L(y) \leq \mu_M(y)$, $\sigma_L(y) \leq \sigma_M(y)$ & $\nu_L(y) \geq \nu_M(y)$: $y \in Y$,
- (iii) L = M iff $L \subseteq M$ and $M \subseteq L$,
- (iv) $1_N L = \{ \langle y, v_L(y), 1 \sigma_L(y), \mu_L(y) \rangle : y \in Y \} = L^c,$
- (v) $L \cup M = \{\langle y, \max(\mu_L(y), \mu_M(y)), \max(\sigma_L(y), \sigma_M(y)), \min(\nu_L(y), \nu_M(y)) \rangle : y \in Y \},$
- (vi) $L \cap M = \{\langle y, \min(\mu_L(y), \mu_M(y)), \min(\sigma_L(y), \sigma_M(y)), \max(\nu_L(y), \nu_M(y)) \rangle : y \in Y \}.$

Definition 2.3 [8] A neutrosophic topology (briefly, $N_s t$) on a non-empty set Y is a family Ψ_N of neutrosophic subsets of Y satisfying

- (i) 0_N , $1_N \in \Psi_N$.
- (ii) $L_1 \cap L_2 \in \Psi_N$ for any $L_1, L_2 \in \Psi_N$.
- (iii) $\bigcup L_x \in \Psi_N, \forall L_x : x \in X \subseteq \Psi_N.$

Then (Y, Ψ_N) is called a neutrosophic topological space (briefly, $N_s t s$) in Y. The Ψ_N elements are called neutrosophic open sets (briefly, $N_s o s$) in Y. A $N_s s C$ is called a neutrosophic closed sets (briefly, $N_s c s$) iff its complement C^c is $N_s o s$. **Definition 2.4** [8] Let (Y, Ψ_N) be $N_s t s$ on Y and L be an $N_s s$ on Y, then the neutrosophic interior of L (briefly,

 $N_sint(L)$) and the neutrosophic closure of L (briefly, $N_scl(L)$) are defined as

$$N_sint(L) = \{ J \{ I : I \subseteq L \& I \text{ is a } N_sos \text{ in } Y \}$$

$$N_s cl(L) = \bigcap \{I : L \subseteq I \& I \text{ is a } N_s cs \text{ in } Y\}.$$

Definition 2.5 [1] Let (Y, Ψ_N) be $N_s ts$ on Y and L be an $N_s s$ on Y. Then L is said to be a neutrosophic regular open set (briefly, $N_s ros$) if $L = N_s int(N_s cl(L))$.

The complement of a $N_s ros$ is called a neutrosophic regular closed set (briefly, $N_s rcs$) in Y.

Definition 2.6 [18] A set K is said to be a neutrosophic

- (i) δ interior of G (briefly, $N_s\delta int(K)$) is defined by $N_s\delta int(K) = \{ \} \{ B : B \subseteq K \& B \text{ is a } N_s ros \text{ in } Y \}$.
- (ii) δ closure of K (briefly, $N_s \delta cl(K)$) is defined by $N_s \delta cl(K) = \bigcap \{A : K \subseteq A \& A \text{ is a } N_s rcs \text{ in } Y \}$.

Definition 2.7 [18] A set L is said to be a neutrosophic

- (i) δ -open set (briefly, $N_s \delta os$) if $L = N_s \delta int(L)$.
- (ii) δ -pre open set (briefly, $N_s \delta \mathcal{P}os$) if $L \subseteq N_s int(N_s \delta cl(L))$.
- (iii) δ -semi open set (briefly, $N_s \delta Sos$) if $L \subseteq N_s cl(N_s \delta int(L))$.
- (iv) e-open set (briefly, $N_s eos$) [16] if $L \subseteq N_s cl(N_s \delta int(L)) \cup N_s int(N_s \delta cl(L))$.
- (v) e^* -open set (briefly, $N_s e^* os$) if $L \subseteq N_s cl(N_s int(N_s \delta cl(L)))$.

The complement of an $N_s\delta os$ (resp. $N_s\delta Pos$, $N_s\delta Sos$, N_seos & N_se^*os) is called a neutrosophic δ (resp. δ -pre, δ -semi, e & e^*) closed set (briefly, $N_s\delta cs$ (resp. $N_s\delta Pcs$, $N_s\delta Scs$, N_secs & N_se^*cs)) in Y.

Definition 2.8 [18] Let (X, τ_N) and (Y, σ_N) be any two Nts's. A map $h: (X, \tau_N) \to (Y, \sigma_N)$ is said to be neutrosophic (resp. δ , δS , δP , $e \& e^*$) continuous (briefly, N_sCts [10] (resp. $N_s\delta Cts$, $N_s\delta Scts$, $N_s\delta Pcts$, N_seCts [17] & N_se^*Cts) if the inverse image of every N_sos in (Y, σ_N) is a N_sos (resp. $N_s\delta os$, $N_s\delta Sos$, $N_s\delta Pos$, N_seos & N_se^*os) in (X, τ_N) .

Definition 2.9 Let (X, τ_N) and (Y, σ_N) be any two $N_s ts$'s. A map $h: (X, \tau_N) \to (Y, \sigma_N)$ is said to be neutrosophic

- (i) e-irresolute (briefly, N_seIrr) [17] if the inverse image of every N_seos in (Y, σ_N) is a N_seos in (X, τ_N) .
- (ii) homeomorphism (briefly, N_sHom) [7] if h and h^{-1} are N_sCts mappings.

Definition 2.10 [15] Let (X, τ_N) and (Y, σ_N) be any two Nts's. A map $h: (X, \tau_N) \to (Y, \sigma_N)$ is said to be neutrosophic (resp. δ , δS , δP & e^*) open map (briefly, N_sO (resp. $N_s\delta O$, $N_s\delta SO$, $N_s\delta PO$ & N_se^*O)) if the image of every N_sos in (X, τ_N) is a N_sos (resp. $N_s\delta os$, $N_s\delta Sos$, $N_s\delta Pos$ & N_se^*os) in (Y, σ_N) .

NEUTROSOPHIC e-OPEN MAPPING

Definition 3.1 A mapping $h: (X, \tau_N) \to (Y, \sigma_N)$ is neutrosophic *e*-open (briefly, $N_s eO$) if image of every neutrosophic open set of (X, τ_N) is $N_s eO$ set in (Y, σ_N) .

Theorem 3.1 The statements are hold but the converse does not true.

- (i) Every $N_s \delta O$ mapping is a $N_s O$ mapping.
- (ii) Every N_sO mapping is a $N_s\delta SO$ mapping.
- (iii) Every N_sO mapping is a $N_s\delta PO$ mapping.
- (iv) Every $N_s \delta SO$ mapping is a $N_s eO$ mapping.
- (v) Every $N_s \delta \mathcal{P}O$ mapping is a $N_s eO$ mapping.
- (vi) Every $N_s eO$ mapping is a $N_s e^*O$ mapping.

Proof. We prove only (v), the others are similar.

(v) Let λ be a N_sos in X. Since h is $N_s\delta\mathcal{P}O$ mapping, $h(\lambda)$ is a $N_s\delta\mathcal{P}os$ in Y. Since every $N_s\delta\mathcal{P}os$ is a N_seos [16], $h(\lambda)$ is a N_seos in Y. Hence h is a N_seo mapping.

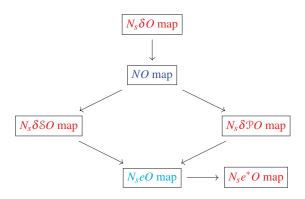


FIGURE 1. $N_s eO$ map's in $N_s ts$.

Example 3.1 Let $X = \{a\} = Y$ and define $N_s s$'s X_1 in X and $Y_1 & Y_2$ in Y are

$$X_1 = \langle X, (\frac{\mu_a}{0.2}, \frac{\sigma_a}{0.5}, \frac{v_a}{0.8}) \rangle, Y_1 = \langle Y, (\frac{\mu_a}{0.2}, \frac{\sigma_a}{0.5}, \frac{v_a}{0.8}) \rangle, Y_2 = \langle Y, (\frac{\mu_a}{0.5}, \frac{\sigma_a}{0.5}, \frac{v_a}{0.5}) \rangle.$$

Then we have $\tau_N = \{0_N, X_1, 1_N\}$ and $\sigma_N = \{0_N, Y_1, Y_2, 1_N\}$. Let $h: (X, \tau_N) \to (Y, \sigma_N)$ be an identity mapping, then h is $N_s O$ map but not $N_s \delta O$ map.

Example 3.2 Let $X = \{a, b, c\} = Y$ and define $N_s s$'s X_1 in X and $Y_1, Y_2 & Y_3$ in Y are

$$\begin{split} X_1 &= \langle X, (\frac{\mu_a}{0.2}, \frac{\mu_b}{0.4}, \frac{\mu_c}{0.4}), (\frac{\sigma_a}{0.5}, \frac{\sigma_b}{0.5}, \frac{\sigma_c}{0.5}), (\frac{v_a}{0.8}, \frac{v_b}{0.6}, \frac{v_c}{0.6}) \rangle, \\ Y_1 &= \langle Y, (\frac{\mu_a}{0.2}, \frac{\mu_b}{0.3}, \frac{\mu_c}{0.4}), (\frac{\sigma_a}{0.5}, \frac{\sigma_b}{0.5}, \frac{\sigma_c}{0.5}), (\frac{v_a}{0.8}, \frac{v_b}{0.7}, \frac{v_c}{0.6}) \rangle, \\ Y_2 &= \langle Y, (\frac{\mu_a}{0.1}, \frac{\mu_b}{0.1}, \frac{\mu_c}{0.4}), (\frac{\sigma_a}{0.5}, \frac{\sigma_b}{0.5}, \frac{\sigma_c}{0.5}), (\frac{v_a}{0.9}, \frac{v_b}{0.9}, \frac{v_c}{0.6}) \rangle, \\ Y_3 &= \langle Y, (\frac{\mu_a}{0.2}, \frac{\mu_b}{0.4}, \frac{\mu_c}{0.4}), (\frac{\sigma_a}{0.5}, \frac{\sigma_b}{0.5}, \frac{\sigma_c}{0.5}), (\frac{v_a}{0.8}, \frac{v_b}{0.6}, \frac{v_c}{0.6}) \rangle. \end{split}$$

Then we have $\tau_N = \{0_N, X_1, 1_N\}$ and $\sigma_N = \{0_N, Y_1, Y_2, 1_N\}$. Let $h: (X, \tau_N) \to (Y, \sigma_N)$ be an identity mapping, then h is a $N_s \delta SO$ map but not $N_s O$ map.

Example 3.3 Let $X = \{a, b, c\} = Y$ and define $N_s s$'s X_1 in X and $Y_1, Y_2, Y_3 & Y_4$ in Y are

$$\begin{split} X_1 &= \langle X, (\frac{\mu_a}{0.3}, \frac{\mu_b}{0.5}, \frac{\mu_c}{0.4}), (\frac{\sigma_a}{0.5}, \frac{\sigma_b}{0.5}, \frac{\sigma_c}{0.5}), (\frac{v_a}{0.7}, \frac{v_b}{0.5}, \frac{v_c}{0.6}) \rangle, \\ Y_1 &= \langle Y, (\frac{\mu_a}{0.3}, \frac{\mu_b}{0.5}, \frac{\mu_c}{0.5}), (\frac{\sigma_a}{0.5}, \frac{\sigma_b}{0.5}, \frac{\sigma_c}{0.5}), (\frac{v_a}{0.7}, \frac{v_b}{0.5}, \frac{v_c}{0.5}) \rangle, \\ Y_2 &= \langle Y, (\frac{\mu_a}{0.4}, \frac{\mu_b}{0.2}, \frac{\mu_c}{0.6}), (\frac{\sigma_a}{0.5}, \frac{\sigma_b}{0.5}, \frac{\sigma_c}{0.5}), (\frac{v_a}{0.6}, \frac{v_b}{0.8}, \frac{v_c}{0.4}) \rangle, \\ Y_3 &= \langle Y, (\frac{\mu_a}{0.4}, \frac{\mu_b}{0.5}, \frac{\mu_c}{0.6}), (\frac{\sigma_a}{0.5}, \frac{\sigma_b}{0.5}, \frac{\sigma_c}{0.5}), (\frac{v_a}{0.6}, \frac{v_b}{0.5}, \frac{v_c}{0.4}) \rangle, \\ Y_4 &= \langle Y, (\frac{\mu_a}{0.3}, \frac{\mu_b}{0.5}, \frac{\mu_c}{0.4}), (\frac{\sigma_a}{0.5}, \frac{\sigma_b}{0.5}, \frac{\sigma_c}{0.5}), (\frac{v_a}{0.7}, \frac{v_b}{0.5}, \frac{v_c}{0.6}) \rangle. \end{split}$$

Then we have $\tau_N = \{0_N, X_1, 1_N\}$ and $\sigma_N = \{0_N, Y_1, Y_2, Y_3, Y_1 \cap Y_2, 1_N\}$. Let $h: (X, \tau_N) \to (Y, \sigma_N)$ be an identity mapping, then h is a $N_s \delta \mathcal{P}O$ map but not $N_s O$ map.

Example 3.4 Let $X = \{a, b, c\} = Y$ and define $N_s s$'s X_1 in X and $Y_1, Y_2 & Y_3$ in Y are

$$\begin{split} X_1 &= \langle X, (\frac{\mu_a}{0.2}, \frac{\mu_b}{0.4}, \frac{\mu_c}{0.4}), (\frac{\sigma_a}{0.5}, \frac{\sigma_b}{0.5}, \frac{\sigma_c}{0.5}), (\frac{v_a}{0.8}, \frac{v_b}{0.6}, \frac{v_c}{0.6}) \rangle \\ Y_1 &= \langle Y, (\frac{\mu_a}{0.2}, \frac{\mu_b}{0.3}, \frac{\mu_c}{0.4}), (\frac{\sigma_a}{0.5}, \frac{\sigma_b}{0.5}, \frac{\sigma_c}{0.5}), (\frac{v_a}{0.8}, \frac{v_b}{0.7}, \frac{v_c}{0.6}) \rangle, \\ Y_2 &= \langle Y, (\frac{\mu_a}{0.1}, \frac{\mu_b}{0.1}, \frac{\mu_c}{0.4}), (\frac{\sigma_a}{0.5}, \frac{\sigma_b}{0.5}, \frac{\sigma_c}{0.5}), (\frac{v_a}{0.9}, \frac{v_b}{0.9}, \frac{v_c}{0.6}) \rangle, \\ Y_3 &= \langle Y, (\frac{\mu_a}{0.2}, \frac{\mu_b}{0.4}, \frac{\mu_c}{0.4}), (\frac{\sigma_a}{0.5}, \frac{\sigma_b}{0.5}, \frac{\sigma_c}{0.5}), (\frac{v_a}{0.8}, \frac{v_b}{0.6}, \frac{v_c}{0.6}) \rangle. \end{split}$$

Then we have $\tau_N = \{0_N, X_1, 1_N\}$ and $\sigma_N = \{0_N, Y_1, Y_2, 1_N\}$. Let $h: (X, \tau_N) \to (Y, \sigma_N)$ be an identity mapping, then h is a $N_s eO$ map but not $N_s \delta \mathcal{P}O$ map.

Example 3.5 Let $X = \{a, b, c\} = Y$ and define $N_s s$'s X_1 in X and $Y_1, Y_2, Y_3 & Y_4$ in Y are

$$\begin{split} X_1 &= \langle X, (\frac{\mu_a}{0.3}, \frac{\mu_b}{0.5}, \frac{\mu_c}{0.4}), (\frac{\sigma_a}{0.5}, \frac{\sigma_b}{0.5}, \frac{\sigma_c}{0.5}), (\frac{v_a}{0.7}, \frac{v_b}{0.5}, \frac{v_c}{0.6}) \rangle, \\ Y_1 &= \langle Y, (\frac{\mu_a}{0.3}, \frac{\mu_b}{0.5}, \frac{\mu_c}{0.5}), (\frac{\sigma_a}{0.5}, \frac{\sigma_b}{0.5}, \frac{\sigma_c}{0.5}), (\frac{v_a}{0.7}, \frac{v_b}{0.5}, \frac{v_c}{0.5}) \rangle, \\ Y_2 &= \langle Y, (\frac{\mu_a}{0.4}, \frac{\mu_b}{0.2}, \frac{\mu_c}{0.6}), (\frac{\sigma_a}{0.5}, \frac{\sigma_b}{0.5}, \frac{\sigma_c}{0.5}), (\frac{v_a}{0.6}, \frac{v_b}{0.8}, \frac{v_c}{0.4}) \rangle, \\ Y_3 &= \langle Y, (\frac{\mu_a}{0.4}, \frac{\mu_b}{0.5}, \frac{\mu_c}{0.6}), (\frac{\sigma_a}{0.5}, \frac{\sigma_b}{0.5}, \frac{\sigma_c}{0.5}), (\frac{v_a}{0.6}, \frac{v_b}{0.5}, \frac{v_c}{0.4}) \rangle, \\ Y_4 &= \langle Y, (\frac{\mu_a}{0.3}, \frac{\mu_b}{0.5}, \frac{\mu_c}{0.4}), (\frac{\sigma_a}{0.5}, \frac{\sigma_b}{0.5}, \frac{\sigma_c}{0.5}), (\frac{v_a}{0.7}, \frac{v_b}{0.5}, \frac{v_c}{0.6}) \rangle. \end{split}$$

Then we have $\tau_N = \{0_N, X_1, 1_N\}$ and $\sigma_N = \{0_N, Y_1, Y_2, Y_3, Y_1 \cap Y_2, 1_N\}$. Let $h: (X, \tau_N) \to (Y, \sigma_N)$ be an identity mapping, then h is a $N_s eO$ map but not $N_s \delta SO$ map.

Example 3.6 Let $X = \{a, b\} = Y$ and define $N_s s$'s X_1 in X and $Y_1 & Y_2$ in Y are

$$X_{1} = \left\langle Y, \left(\frac{\mu_{a}}{0.3}, \frac{\mu_{b}}{0.5}\right), \left(\frac{\sigma_{a}}{0.5}, \frac{\sigma_{b}}{0.5}\right), \left(\frac{v_{a}}{0.7}, \frac{v_{b}}{0.6}\right) \right\rangle, Y_{1} = \left\langle Y, \left(\frac{\mu_{a}}{0.3}, \frac{\mu_{b}}{0.2}\right), \left(\frac{\sigma_{a}}{0.5}, \frac{\sigma_{b}}{0.5}\right), \left(\frac{v_{a}}{0.5}, \frac{v_{b}}{0.5}\right) \right\rangle, Y_{2} = \left\langle Y, \left(\frac{\mu_{a}}{0.3}, \frac{\mu_{b}}{0.5}\right), \left(\frac{\sigma_{a}}{0.5}, \frac{\sigma_{b}}{0.5}\right), \left(\frac{v_{a}}{0.7}, \frac{v_{b}}{0.6}\right) \right\rangle.$$

Then we have $\tau_N = \{0_N, X_1, 1_N\}$ and $\sigma_N = \{0_N, Y_1, 1_N\}$. Let $h: (X, \tau_N) \to (Y, \sigma_N)$ be an identity mapping, then h is a $N_s e^* O$ map but not $N_s e O$ map.

Theorem 3.2 A mapping $h: (X, \tau_N) \to (Y, \sigma_N)$ is $N_s eO$ iff for every $N_s s \lambda$ of (X, τ_N) , $h(N_s int(\lambda)) \subseteq N_s eint(h(\lambda))$. **Proof.** Necessity: Let h be a $N_s eO$ mapping and λ be a $N_s os$ in (X, τ_N) . Now, $N_s int(\lambda) \subseteq \lambda$ implies $h(N_s int(\lambda)) \subseteq h(\lambda)$. Since h is a $N_s eO$ mapping, $h(N_s int(\lambda))$ is $N_s eos$ in (Y, σ_N) such that $h(N_s int(\lambda)) \subseteq h(\lambda)$ therefore $h(N_s int(\lambda)) \subseteq N_s eint(h(\lambda))$.

Sufficiency: Assume λ is a N_sos of (X, τ_N) . Then $h(\lambda) = h(N_sint(\lambda)) \subseteq N_seint(h(\lambda))$. But $N_seint(h(\lambda)) \subseteq h(\lambda)$. So $h(\lambda) = N_seint(\lambda)$ which implies $h(\lambda)$ is a N_seos of (Y, σ_N) and hence h is a N_seo .

Theorem 3.3 If $h:(X,\tau_N)\to (Y,\sigma_N)$ is a N_seO mapping then $N_sint(h^{-1}(\lambda))\subseteq h^{-1}(N_seint(\lambda))$ for every N_ss λ of (Y,σ_N) .

Proof. Let λ be a $N_s s$ of (Y, σ_N) . Then $N_s int(h^{-1}(\lambda))$ is a $N_s os$ in (X, τ_N) . Since h is $N_s eO$, $h(N_s int(h^{-1}(\lambda)))$ is $N_s eo$ in (Y, σ_N) and hence $h(N_s int(h^{-1}(\lambda))) \subseteq N_s eint(h(h^{-1}(\lambda))) \subseteq N_s eint(\lambda)$. Thus $N_s int(h^{-1}(\lambda)) \subseteq h^{-1}(N_s eint(\lambda))$.

Theorem 3.4 A mapping $h: (X, \tau_N) \to (Y, \sigma_N)$ is $N_s eO$ iff for each $N_s s \mu$ of (Y, σ_N) and for each $N_s c s \lambda$ of (X, τ_N) containing $h^{-1}(\mu)$ there is a $N_s ecs \psi$ of (Y, σ_N) such that $\mu \subseteq \lambda$ and $h^{-1}(\psi) \subseteq \lambda$.

Proof. Necessity: Assume h is a N_seO mapping. Let μ be the N_scs of (Y, σ_N) and λ is a N_scs of (X, τ_N) such that $h^{-1}(\mu) \subseteq \lambda$. Then $\psi = (h^{-1}(\lambda^c))^c$ is N_secs of (Y, σ_N) such that $h^{-1}(\psi) \subseteq \lambda$. Sufficiency: Assume ω is a N_sos of (X, τ_N) . Then $h^{-1}((h(\omega))^c \subseteq \omega^c$ and ω^c is N_scs in (X, τ_N) . By hypothesis there

Sufficiency: Assume ω is a N_sos of (X, τ_N) . Then $h^{-1}((h(\omega))^c \subseteq \omega^c$ and ω^c is N_scs in (X, τ_N) . By hypothesis there is a N_secs ψ of (Y, σ_N) such that $(h(\omega))^c \subseteq \psi$ and $h^{-1}(\psi) \subseteq \omega^c$. Therefore $\omega \subseteq (h^{-1}(\psi))^c$. Hence $\psi^c \subseteq h(\omega) \subseteq h((h^{-1}(\psi))^c) \subseteq \psi^c$ which implies $h(\omega) = \psi^c$. Since ψ^c is N_seos of (Y, σ_N) . Hence $h(\omega)$ is N_seo in (Y, σ_N) and thus h is N_seo mapping.

Theorem 3.5 A mapping $h: (X, \tau_N) \to (Y, \sigma_N)$ is $N_s eO$ iff $h^{-1}(N_s ecl(\lambda) \subseteq N_s cl(h^{-1}(\lambda))$ for every $N_s s \lambda$ of (Y, σ_N) . **Proof.** Necessity: Assume h is a $N_s eO$ mapping. For any $N_s s \lambda$ of (Y, σ_N) , $h^{-1}(\lambda) \subseteq N_s cl(h^{-1}(\lambda))$. Therefore by Theorem 3.4 there exists a $N_s ecs \mu$ in (Y, σ_N) such that $\lambda \subseteq \mu$ and $h^{-1}(\mu) \subseteq N_s cl(h^{-1}(\lambda))$. Therefore we obtain that $h^{-1}(N_s ecl(\lambda)) \subseteq h^{-1}(\mu) \subseteq N_s cl(h^{-1}(\lambda))$.

Sufficiency: Assume λ is a $N_s s$ of (Y, σ_N) and μ is a $N_s c s$ of (X, τ_N) containing $h^{-1}(\lambda)$. Put $\zeta = cl(\lambda)$, then $\lambda \subseteq \zeta$ and ζ is $N_s e c$ and $h^{-1}(\zeta) \subseteq cl(h^{-1}(\lambda)) \subseteq \mu$. Then by Theorem 3.4, h is $N_s e O$ mapping.

Theorem 3.6 If $h:(X,\tau_N)\to (Y,\sigma_N)$ and $g:(Y,\sigma_N)\to (Z,\rho_N)$ be two neutrosophic mappings and $g\circ h:(X,\tau_N)\to (Z,\rho_N)$ is N_seO . If $g:(Y,\sigma_N)\to (Z,\rho_N)$ is N_seO mapping.

Proof. Let ψ be a N_sos in (X, τ_N) . Then $g \circ h(\psi)$ is N_seos of (Z, ρ_N) because $g \circ h$ is N_seO mapping. Since g is N_seIrr and $g \circ h(\psi)$ is N_seos of (Z, ρ_N) therefore $g^{-1}(g \circ h(\psi)) = h(\psi)$ is N_seos in (Y, σ_N) . Hence h is N_seO mapping. **Theorem 3.7** If $h: (X, \tau_N) \to (Y, \sigma_N)$ is N_sO and $g: (Y, \sigma_N) \to (Z, \rho_N)$ is N_seO mappings then $g \circ f: (X, \tau_N) \to (Z, \rho_N)$ is N_seO .

Proof. Let ψ be a N_sos in (X, τ_N) . Then $h(\psi)$ is a N_sos of (Y, σ_N) because h is a N_sO mapping. Since g is N_seO , $g(h(\psi)) = (g \circ h)(\psi)$ is N_seos of (Z, ρ_N) . Hence $g \circ h$ is N_seO mapping.

NEUTROSOPHIC e-CLOSED MAPPING

Definition 4.1 A mapping $h:(X,\tau_N)\to (Y,\sigma_N)$ is N_se -closed (briefly, N_seC) if image of every N_scs of (X,τ_N) is N_secs in (Y,σ_N) .

Theorem 4.1 The statements are hold but the converse does not true.

- (i) Every $N_s \delta C$ mapping is a $N_s C$ mapping.
- (ii) Every N_sC mapping is a $N_s\delta SC$ mapping.
- (iii) Every N_sC mapping is a $N_s\delta PC$ mapping.
- (iv) Every $N_s \delta SC$ mapping is a $N_s eC$ mapping.
- (v) Every $N_s \delta \mathcal{P}C$ mapping is a $N_s eC$ mapping.
- (vi) Every $N_s eC$ mapping is a $N_s e^*C$ mapping.

Proof. We prove only (v), the others are similar.

(v) Let λ be a $N_s cs$ in X. Since h is $N_s \delta \mathcal{P} C$ mapping, $h(\lambda)$ is a $N_s \delta \mathcal{P} cs$ in Y. Since every $N_s \delta \mathcal{P} cs$ is a $N_s ecs$ [16], $h(\lambda)$ is a $N_s ecs$ in Y. Hence h is a $N_s eC$ mapping.

Example 4.1 In Example 3.1, h is a N_sC map but not $N_s\delta C$ map.

Example 4.2 In Example 3.2, h is a $N_s \delta SC$ map but not $N_s C$ map.

Example 4.3 In Example 3.3, h is a $N_s \delta PC$ map but not $N_s C$ map.

Example 4.4 In Example 3.4, h is a $N_s eC$ map but not $N_s \delta PC$ map.

Example 4.5 In Example 3.5, *h* is a $N_s eC$ map but not $N_s \delta SC$ map.

Example 4.6 In Example 3.6, h is a $N_s e^* C$ map but not $N_s e C$ map.

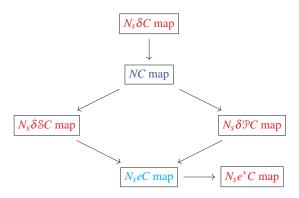


FIGURE 2. $N_s eC$ map's in $N_s ts$.

Theorem 4.2 A mapping $h: (X, \tau_N) \to (Y, \sigma_N)$ is $N_s eC$ iff for each $N_s s \mu$ of (Y, σ_N) and for each $N_s os \lambda$ of (X, τ_N) containing $h^{-1}(\mu)$ there is a $N_s eos \psi$ of (Y, σ_N) such that $\mu \subseteq \psi$ and $h^{-1}(\psi) \subseteq \lambda$.

Proof. Necessity: Assume h is a N_seC mapping. Let μ be the N_scs of (Y, σ_N) and λ is a N_sos of (X, τ_N) such that $h^{-1}(\mu) \subseteq \lambda$. Then $\psi = Y - h^{-1}(\lambda^c)$ is N_seos of (Y, σ_N) such that $h^{-1}(\psi) \subseteq \lambda$.

Sufficiency: Assume ψ is a $N_s cs$ of (X, τ_N) . Then $(h(\psi))^c$ is a $N_s s$ of (Y, σ_N) and ψ^c is $N_s os$ in (X, τ_N) such that $h^{-1}((h(\psi))^c) \subseteq \psi^c$. By hypothesis there is a $N_s eos$ ψ of (Y, σ_N) such that $(h(\psi))^c \subseteq \psi$ and $h^{-1}(\psi) \subseteq \psi^c$. Therefore $\psi \subseteq (h^{-1}(\psi))^c$. Hence $\psi^c \subseteq h(\psi) \subseteq h((h^{-1}(\psi))^c) \subseteq \psi^c$ which implies $h(\psi) = \psi^c$. Since ψ^c is $N_s ecs$ of (Y, σ_N) . Hence $h(\psi)$ is $N_s ec$ in (Y, σ_N) and thus h is $N_s ec$ mapping.

Theorem 4.3 If $h:(X,\tau_N)\to (Y,\sigma_N)$ is N_sC and $g:(Y,\sigma_N)\to (Z,\rho_N)$ is N_seC . Then $g\circ h:(X,\tau_N)\to (Z,\rho_N)$ is N_seC .

Proof. Let ψ be a $N_s cs$ in (X, τ_N) . Then $h(\psi)$ is $N_s cs$ of (Y, σ_N) because h is $N_s C$ mapping. Now $(g \circ h)(\psi) = g(h(\psi))$ is $N_s ecs$ in (Z, ρ_N) because g is $N_s eC$ mapping. Thus $g \circ h$ is $N_s eC$ mapping.

Theorem 4.4 If $h:(X,\tau_N)\to (Y,\sigma_N)$ is N_seC map, then $N_secl(h(\psi))\subsetneq h(N_scl(\psi))$.

Proof. Obvious.

Theorem 4.5 Let $h:(X,\tau_N)\to (Y,\sigma_N)$ and $g:(Y,\sigma_N)\to (Z,\rho_N)$ are N_seC mappings. If every N_secs of (Y,σ_N) is N_sc then, $g\circ h:(X,\tau_N)\to (Z,\rho_N)$ is N_seC .

Proof. Let ψ be a N_scs in (X, τ_N) . Then $h(\psi)$ is N_secs of (Y, σ_N) because h is N_seC mapping. By hypothesis $h(\psi)$ is N_scs of (Y, σ_N) . Now $g(h(\psi)) = (g \circ h)(\psi)$ is N_secs in (Z, ρ_N) because g is N_seC mapping. Thus $g \circ h$ is N_seC mapping.

Theorem 4.6 Let $h: (X, \tau_N) \to (Y, \sigma_N)$ be a objective mapping, then the following statements are equivalent:

- (i) h is a $N_s eO$ mapping.
- (ii) h is a $N_s eC$ mapping.
- (iii) h^{-1} is $N_s eCts$ mapping.

Proof. (i) \Rightarrow (ii): Let us assume that h is a N_seO mapping. By definition, ψ is a N_sos in (X, τ_N) , then $h(\psi)$ is a N_seos in (Y, σ_N) . Here, ψ is N_seos in (X, τ_N) , then $X - \psi$ is a N_seos in (X, τ_N) . By assumption, $h(X - \psi)$ is a N_seos in (Y, σ_N) . Hence, $Y - h(X - \psi)$ is a N_seos in (Y, σ_N) . Therefore, h is a N_seC mapping.

- (ii) \Rightarrow (iii): Let ψ be a N_scs in (X, τ_N) By (ii), $h(\psi)$ is a N_secs in (Y, σ_N) . Hence, $h(\psi) = (h^{-1})^{-1}(\psi)$, so h^{-1} is a N_secs in (Y, σ_N) . Hence, h^{-1} is N_seCts .
 - (iii) \Rightarrow (i): Let ψ be a $N_s os$ in (X, τ_N) By (iii), $(h^{-1})^{-1}(\psi) = h(\psi)$ is a $N_s eO$ mapping.

NEUTROSOPHIC e-HOMEOMORPHISM

Definition 5.1 A bijection $h:(X,\tau_N)\to (Y,\sigma_N)$ is called a N_se -homeomorphism (briefly N_seHom) if h and h^{-1} are N_seCts .

Theorem 5.1 Each N_sHom is a N_seHom . But not conversely.

Proof. Let h be N_sHom , then h and h^{-1} are N_sCts . But every N_sCts function is N_seCts . Hence, h and h^{-1} is N_seCts . Therefore, h is a N_seHom .

Example 5.1 Let $X = \{a, b, c\} = Y$ and define $N_s s$'s $X_1, X_2 \& X_3$ in X and Y_1 in Y are

$$\begin{split} X_1 &= \langle X, (\frac{\mu_a}{0.2}, \frac{\mu_b}{0.3}, \frac{\mu_c}{0.4}), (\frac{\sigma_a}{0.5}, \frac{\sigma_b}{0.5}, \frac{\sigma_c}{0.5}), (\frac{v_a}{0.8}, \frac{v_b}{0.7}, \frac{v_c}{0.6}) \rangle, \\ X_2 &= \langle X, (\frac{\mu_a}{0.1}, \frac{\mu_b}{0.1}, \frac{\mu_c}{0.4}), (\frac{\sigma_a}{0.5}, \frac{\sigma_b}{0.5}, \frac{\sigma_c}{0.5}), (\frac{v_a}{0.9}, \frac{v_b}{0.9}, \frac{v_c}{0.6}) \rangle, \\ X_3 &= \langle X, (\frac{\mu_a}{0.2}, \frac{\mu_b}{0.4}, \frac{\mu_c}{0.4}), (\frac{\sigma_a}{0.5}, \frac{\sigma_b}{0.5}, \frac{\sigma_c}{0.5}), (\frac{v_a}{0.8}, \frac{v_b}{0.6}, \frac{v_c}{0.6}) \rangle, \\ Y_1 &= \langle Y, (\frac{\mu_a}{0.2}, \frac{\mu_b}{0.4}, \frac{\mu_c}{0.4}), (\frac{\sigma_a}{0.5}, \frac{\sigma_b}{0.5}, \frac{\sigma_c}{0.5}), (\frac{v_a}{0.8}, \frac{v_b}{0.6}, \frac{v_c}{0.6}) \rangle. \end{split}$$

Then we have $\tau_N = \{0_N, X_1, X_2, 1_N\}$ and $\sigma_N = \{0_N, Y_1, 1_N\}$. Let $h: (X, \tau_N) \to (Y, \sigma_N)$ be an identity mapping, then h is $N_s e Hom$ but not $N_s Hom$.

Theorem 5.2 Let $h:(X,\tau_N)\to (Y,\sigma_N)$ be a bijective mapping. If h is N_seCts , then the following statements are equivalent:

- (i) h is a $N_s eC$ mapping.
- (ii) h is a $N_s eO$ mapping.
- (iii) h^{-1} is a $N_s eHom$.

Proof. (i) \Rightarrow (ii): Assume that h is a bijective mapping and a N_seC mapping. Hence, h^{-1} is a N_seCts mapping. We know that each N_sos in (X, τ_N) is a N_seos in (Y, σ_N) . Hence, h is a N_seO mapping.

- (ii) \Rightarrow (iii): Let h be a bijective and N_sO mapping. Further, h^{-1} is a N_seCts mapping. Hence, h and h^{-1} are N_seCts . Therefore, h is a N_seHom .
- (iii) \Rightarrow (i): Let h be a N_seHom , then h and h^{-1} are N_seCts . Since each N_scs in (X, τ_N) is a N_secs in (Y, σ_N) , hence h is a N_seC mapping.

Definition 5.2 A $N_s ts(X, \tau_N)$ is said to be a neutrosophic $eT_{\frac{1}{2}}$ (briefly, $N_s eT_{\frac{1}{2}}$)-space if every $N_s ecs$ is $N_s c$ in (X, τ_N) . **Theorem 5.3** Let $h: (X, \tau_N) \to (Y, \sigma_N)$ be a $N_s eHom$, then h is a $N_s Hom$ if (X, τ_N) and (Y, σ_N) are $N_s eT_{\frac{1}{2}}$ -space.

Proof. Assume that ψ is a N_scs in (Y, σ_N) , then $h^{-1}(\psi)$ is a N_secs in (X, τ_N) . Since (X, τ_N) is an N_secs $T_{\frac{1}{2}}$ -space, $h^{-1}(\psi)$ is a N_scs in (X, τ_N) . Therefore, h is N_sCts . By hypothesis, h^{-1} is N_seCts . Let ζ be a N_scs in (X, τ_N) . Then, $(h^{-1})^{-1}(\zeta) = h(\zeta)$ is a N_scs in (Y, σ_N) , by presumption. Since (Y, σ_N) is a N_secs $T_{\frac{1}{2}}$ -space, $h(\zeta)$ is a N_scs in (Y, σ_N) . Hence, h^{-1} is N_sCts . Hence, h is a N_sHom .

Theorem 5.4 Let $h:(X,\tau_N)\to (Y,\sigma_N)$ be a N_sts , then the following are equivalent if (Y,σ_N) is a $N_seT_{\frac{1}{2}}$ -space:

- (i) h is $N_s eC$ mapping.
- (ii) If ψ is a $N_s os$ in (X, τ_N) , then $h(\psi)$ is $N_s eos$ in (Y, σ_N) .
- (iii) $h(N_sint(\psi)) \subseteq N_scl(N_sint(h(\psi)))$ for every $N_ss \psi$ in (X, τ_N) .

Proof. (i) \Rightarrow (ii): Obvious.

- (ii) \Rightarrow (iii): Let ψ be a $N_s s$ in (X, τ_N) . Then, $N_s int(\psi)$ is a $N_s o s$ in (X, τ_N) . Then, $h(N_s int(\psi))$ is a $N_s e o s$ in (Y, σ_N) . Since (Y, σ_N) is a $N_s e T_{\frac{1}{2}}$ -space, so $h(N_s int(\psi))$ is a $N_s o s$ in (Y, σ_N) . Therefore, $h(N_s int(\psi)) = N_s int(h(N_s int(\psi))) \subseteq N_s cl(N_s int(h(\psi)))$.
- (iii) \Rightarrow (i): Let ψ be a $N_s cs$ in (X, τ_N) . Then, ψ^c is a $N_s os$ in (X, τ_N) . From, $h(N_s int(\psi^c)) \subseteq N_s cl(N_s int(h(\psi^c)))$. Hence, $h(\psi^c) \subseteq N_s cl(N_s int(h(\psi^c)))$. Therefore, $h(\psi^c)$ is $N_s eos$ in (Y, σ_N) . Therefore, $h(\psi)$ is a $N_s eos$ in (X, τ_N) . Hence, h is a $N_s C$ mapping.

Theorem 5.5 Let $h: (X, \tau_N) \to (Y, \sigma_N)$ and $g: (Y, \sigma_N) \to (Z, \rho_N)$ be $N_s e C$, where (X, τ_N) and (Z, ρ_N) are two $N_s t s$'s and (Y, σ_N) a $N_s e T_{\frac{1}{3}}$ -space, then the composition $g \circ h$ is $N_s e C$.

Proof. Let ψ be a N_scs in (X, τ_N) . Since h is N_sec and $h(\psi)$ is a N_secs in (Y, σ_N) , by assumption, $h(\psi)$ is a N_scs in (Y, σ_N) . Since g is N_sec , then $g(h(\psi))$ is N_sec in (Z, ρ_N) and $g(h(\psi)) = (g \circ h)(\psi)$. Therefore, $g \circ h$ is N_sec .

Theorem 5.6 Let $h:(X,\tau_N)\to (Y,\sigma_N)$ and $g:(Y,\sigma_N)\to (Z,\rho_N)$ be two N_sts 's, then the following hold:

- (i) If $g \circ h$ is $N_s eO$ and h is $N_s Cts$, then g is $N_s eO$.
- (ii) If $g \circ h$ is $N_s O$ and g is $N_s eCts$, then h is $N_s eO$.

Proof. Obvious.

NEUTROSOPHIC e-C HOMEOMORPHISM

Definition 6.1 A bijection $h: (X, \tau_N) \to (Y, \sigma_N)$ is called a N_se -Completely homeomorphism (briefly, N_seCHom) if h and h^{-1} are N_seIrr mappings.

Theorem 6.1 Each N_seCHom is a N_seHom . But not conversely.

Proof. Let us assume that ψ is a $N_s cs$ in (Y, σ_N) . This shows that ψ is a $N_s ecs$ in (Y, σ_N) . By assumption, $h^{-1}(\psi)$ is a $N_s ecs$ in (X, τ_N) . Hence, h is a $N_s eCts$ mapping. Hence, h and h^{-1} are $N_s eCts$ mappings. Hence h is a $N_s eHom$.

Example 6.1 Let $X = \{a, b, c\} = Y$ and define $N_s s$'s $X_1 \& X_2$ in X and Y_1 in Y are

$$\begin{split} X_1 &= \langle X, (\frac{\mu_a}{0.2}, \frac{\mu_b}{0.3}, \frac{\mu_c}{0.4}), (\frac{\sigma_a}{0.5}, \frac{\sigma_b}{0.5}, \frac{\sigma_c}{0.5}), (\frac{v_a}{0.8}, \frac{v_b}{0.7}, \frac{v_c}{0.6}) \rangle, \\ X_2 &= \langle X, (\frac{\mu_a}{0.1}, \frac{\mu_b}{0.1}, \frac{\mu_c}{0.4}), (\frac{\sigma_a}{0.5}, \frac{\sigma_b}{0.5}, \frac{\sigma_c}{0.5}), (\frac{v_a}{0.9}, \frac{v_b}{0.9}, \frac{v_c}{0.6}) \rangle, \\ Y_1 &= \langle Y, (\frac{\mu_a}{0.4}, \frac{\mu_b}{0.3}, \frac{\mu_c}{0.2}), (\frac{\sigma_a}{0.5}, \frac{\sigma_b}{0.5}, \frac{\sigma_c}{0.5}), (\frac{v_a}{0.6}, \frac{v_b}{0.7}, \frac{v_c}{0.8}) \rangle. \end{split}$$

Then we have $\tau_N = \{0_N, X_1, X_2, 1_N\}$ and $\sigma_N = \{0_N, Y_1, 1_N\}$. Let $h: (X, \tau_N) \to (Y, \sigma_N)$ be mapping defined as h(a) = c, h(b) = b & h(c) = a, then h is $N_s e Hom$ but not $N_s e C Hom$.

Theorem 6.2 If $h:(X,\tau_N)\to (Y,\sigma_N)$ is a N_seCHom , then $N_secl(h^{-1}(\psi))\subseteq h^{-1}(N_scl(\psi))$ for each N_sts ψ in (Y,σ_N) .

Proof. Let ψ be a $N_s ts$ in (Y, σ_N) . Then, $N_s cl(\psi)$ is a $N_s cs$ in (Y, σ_N) , and every $N_s cs$ is a $N_s ecs$ in (Y, σ_N) . Assume h is $N_s ellow{r}$, $h^{-1}(N_s cl(\lambda))$ is a $N_s ecs$ in (X, τ_N) , then $N_s cl(h^{-1}(N_s cl(\psi))) = h^{-1}(N_s cl(\psi))$. Here, $N_s ecl(h^{-1}(\psi)) \subseteq N_s ecl(h^{-1}(N_s cl(\psi))) = h^{-1}(N_s cl(\psi))$. Therefore, $N_s ecl(h^{-1}(\psi)) \subseteq h^{-1}(N_s cl(\psi))$ for every $N_s s$ ψ in (Y, σ_N) .

Theorem 6.3 Let $h:(X,\tau_N)\to (Y,\sigma_N)$ be a N_seCHom , then $N_secl(h^{-1}(\psi))=h^{-1}(N_secl(\psi))$ for each N_ss ψ in (Y,σ_N) .

Proof. Since h is a N_seCHom , then h is a N_seIrr mapping. Let ψ be a N_ss in (Y, σ_N) . Clearly, $N_secl(\psi)$ is a N_secs in (X, τ_N) . Then $N_secl(\psi)$ is a N_secs in (X, τ_N) . Since $h^{-1}(\psi) \subseteq h^{-1}(N_secl(\psi))$, then $N_secl(h^{-1}(\psi)) \subseteq N_secl(h^{-1}(N_secl(\psi))) = h^{-1}(N_secl(\psi))$. Therefore, $N_secl(h^{-1}(\psi)) \subseteq h^{-1}(N_secl(\psi))$. Let h be a N_seCHom . $h^{-1}(h) \subseteq h^{-1}(h^{-1}(h) \subseteq h^{-1}(h^{-1}(h)) \subseteq h^{-1}(h^{-1}(h) \supseteq h^{-1}(h^{-1}(h)) \subseteq h^{-1}(h^{-1}(h) \supseteq h^{-1}(h^{-1}(h)) \subseteq h^{-1}(h^{-1}(h) \supseteq h^{-1}(h^{-1}(h)) \supseteq \supseteq h^{-1}(h^{-1$

Theorem 6.4 If $h:(X,\tau_N)\to (Y,\sigma_N)$ and $g:(Y,\sigma_N)\to (Z,\rho_N)$ are N_seCHom 's, then $g\circ h$ is a N_seCHom .

Proof. Let h and g to be two N_seCHom 's. Assume ψ is a N_secs in (Z, ρ_N) . Then, $g^{-1}(\psi)$ is a N_secs in (Y, σ_N) . Then, by hypothesis, $h^{-1}(g^{-1}(\psi))$ is a N_secs in (X, τ_N) . Hence, $g \circ h$ is a N_seIrr mapping. Now, let ζ be a N_secs in (X, τ_N) . Then, by presumption, h(g) is a N_secs in (Y, σ_N) . Then, by hypothesis, $g(h(\zeta))$ is a N_secs in (Z, ρ_N) . This implies that $g \circ h$ is a N_seIrr mapping. Hence, $g \circ h$ is a N_seCHom .

CONCLUSIONS

In this paper, the new concept of a N_sHom and a N_seHom in N_sts was discussed. Furthermore, the work was extended as the N_seCHom , N_seO and N_seC mapping and $N_seT_{\frac{1}{2}}$ -space. Further, the study demonstrated N_seCHom 's and also derived some of their related attributes. In future, we can carry out the further research on neutrosophic e-compactness, neutrosophic e-connectedness and neutrosophic contra e-continuous functions.

REFERENCES

- 1. I. Arokiarani, R. Dhavaseelan, S. Jafari and M. Parimala, On some new notions and functions in neutrosophic topological space, Neutrosophic Sets and Systems, 16 (2017), 16-19.
- 2. K. Atanassov and S. Stoeva, Intuitionistic fuzzy sets, in: polish syrup. on interval and fuzzy mathematics, Poznan, (1983), 23-26.
- 3. K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.
- 4. K. Atanassov, Review and new results on intuitionistic fuzzy sets, Preprint IM-MFAIS, Sofia, (1988), 1-88.
- 5. C. L. Chang, Fuzzy topological space, J. Math. Anal. Appl., 24 (1968),182-190.
- Erdal Ekici, On e-open sets, DP*-sets and DPε*-sets and decomposition of continuity, The Arabian Journal for Science and Engineering, 33
 (2A) (2008), 269-282.
- M. Parimala R. Jeevitha, F. Smarandache, S. Jafari and R. Udhayakumar Neutrosophic αΨ-homeomorphism in Neutrosophic Topological Spaces, Information, 9 (187) (2018), 1-10.
- 8. A. A. Salama and S. A. Alblowi, Neutrosophic set and neutrosophic topological spaces, IOSR Journal of Mathematics, 3 (4) (2012), 31-35.
- 9. A. A. Salama, F. Smarandache and S. A. Alblowi, *Characteristic function of neutrosophic set*, Neutrosophic Sets and Systems, 3 (2014), 14-17.
- A. A. Salama, F. Smarandache and V. Kromov, Neutrosophic closed set and neutrosophic continuous functions, Neutrosophic Sets and Systems, 4 (2014), 4-8.
- A. A. Salama, Basic structure of some classes of neutrosophic crisp nearly open sets and Possible application to GIS topology, Neutrosophic Sets and Systems, 7 (2015), 18-22.
- 12. V. Seenivasan and K. Kamala, Fuzzy e-continuity and fuzzy e-open sets, Annals of Fuzzy Mathematics and Informatics, 8 (2014), 141-148.
- 13. F. Smaradache, Neutrosophic set: A generalization of the intuitionistic fuzzy sets, Inter. J. Pure Appl. Math., 24 (2005), 287-297.
- 14. S. Saha, Fuzzy δ-continuous mappings, Journal of Mathematical Analysis and Applications, 126 (1987), 130-142.
- 15. A. Vadivel and C. John Sundar, Neutrosophic δ-Open Maps and Neutrosophic δ-Closed Maps, Submitted.
- 16. A. Vadivel, C. John Sundar and P. Thangaraja, Neutrosophic e-open sets in a neutrosophic topological spaces, Submitted.
- 17. A. Vadivel, P. Thangaraja and C. John Sundar, Neutrosophic e-Continuous Maps and Neutrosophic e-Irresolute Maps, Submitted.
- 18. A. Vadivel, M. Seenivasan and C. John Sundar, An Introduction to δ-open sets in a Fuzzy Neutrosophic Topological Spaces, Submitted.
- 19. V. Chandrasekar, D. Sobana and A. Vadivel, On Fuzzy e-open Sets, Fuzzy e-continuity and Fuzzy e-compactness in Intuitionistic Fuzzy Topological Spaces, Sahand Communications in Mathematical Analysis (SCMA), 12 (1) (2018), 131-153.
- 20. L. A. Zadeh, Fuzzy sets, Information and control, 8 (1965), 338-353.