湖南大学学报(自然科学版) Journal of Hunan University(Natural Sciences)

Vol. 48. No. 11. November 2021

Open Access Article

NEUTROSOPHIC GENERALIZED SEMI ALPHA STAR CLOSED SETS IN NEUTROSOPHIC TOPOLOGICAL SPACES

P.Anbarasi Rodrigo

Assistant Professor, Department of Mathematics, St. Mary's College (Autonomous), Thoothukudi, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, India.

Email.id: anbu.n.u@gmail.com

S.Maheswari

Research Scholar (Full Time), Department of Mathematics, Register Number: 20212212092003, St. Mary's College (Autonomous), Thoothukudi, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, India, Email.id:mahma1295@gmail.com

Abstract

The aim of this paper is to introduce a new concept of Neutrosophic closed sets namely Neutrosophic generalized semi alpha star closed sets (Neutrosophic $gs\alpha^*$ – closed sets) in Neutrosophic topological spaces. Properties and characterizations of Neutrosophic generalized semi alpha star closed sets are derived and compared with already existing sets.

Keywords: $N_{eu}gs\alpha^*$ —closed sets , $N_{eu}gs\alpha^*$ —open sets , $N_{eu}gs\alpha^*$ —interior , $N_{eu}gs\alpha^*$ — closure. 抽象的

本文的目的是在中智拓扑空间中引入一个新的中智闭集概念,即中智广义半阿尔法星闭集(Neutrosophic gs α^* -闭集)。导出了中智广义半阿尔法星封闭集的性质和特征,并与现有的集进行了比较。

关键词: N_eu gsα^*-闭集, N_eu gsα^*-**开集**, N_eu gsα^*-**内部**, N_eu gsα^*-闭包。

I. INTRODUCTION

The term "neutrosophic" etymologically comes from "neutrosophy" which means knowledge of neutral thought. F.Smarandache[6] first introduced the concept of Neutrosophic set theory and it is based on intuitionistic fuzzy sets by K.Atanassov's[2] and also based on fuzzy sets by L.A.Zadeh's[15]. It includes three components, truth, indeterminancy and false membership function. The real life application of neutrosophic topology is applied in Information Systems, Applied Mathematics etc. R.Dhavaseelan and S.Jafari[4] has discussed

about the concept of generalized neutrosophic closed sets.

In this paper, we introduce some new concepts in neutrosophic topological spaces such as Neutrosophic $gs\alpha^*$ —closed sets and Neutrosophic $gs\alpha^*$ —open sets. We also studied the relationship between Neutrosophic β —closed set , Neutrosophic α —closed set, Neutrosophic pre-closed set, Neutrosophic semi-closed set, Neutrosophic generalized Closed set, etc.

Received: September 14, 2021 / Revised: October 09, 2021 / Accepted: October 27, 2021 / Published: November 03, 2021 About the authors: P. Anbarasi Rodrigo

II. PRELIMINARIES

Definition 2.1:[13] Let \mathbb{P} be a non-empty fixed set . A Neutrosophic set H on the universe \mathbb{P} is defined as $H = \{\langle \mathcal{P}, (t_H(\mathcal{P}), i_H(\mathcal{P}), f_H(\mathcal{P})) \rangle : \mathcal{P} \in \mathbb{P} \}$ where $t_H(\mathcal{P}), i_H(\mathcal{P}), f_H(\mathcal{P})$ represent the degree of membership function $t_H(\mathcal{P})$, the degree of indeterminacy $i_H(\mathcal{P})$ and the degree of non-membership function $f_H(\mathcal{P})$ respectively for each element $\mathcal{P} \in \mathbb{P}$ to the set H. Also, t_H , i_H , i_H , f_H : $\mathbb{P} \to]^- 0$, $1^+ [$ and $0 \le t_H(\mathcal{P}) + t_H(\mathcal{P}) + f_H(\mathcal{P}) \le 3^+$. Set of all Neutrosophic set over \mathbb{P} is denoted by $N_{\text{eu}}(\mathbb{P})$.

Definition 2.2:[13] Let \mathbb{P} be a non-empty set. $\mathbb{A} = \{ \langle \mathcal{P}, (t_{\mathbb{A}}(\mathcal{P}), i_{\mathbb{A}}(\mathcal{P}), f_{\mathbb{A}}(\mathcal{P})) \rangle : \mathcal{P} \in \mathbb{P} \}$ and $\mathbb{B} = \{ \langle \mathcal{P}, (t_{\mathbb{B}}(\mathcal{P}), i_{\mathbb{B}}(\mathcal{P}), f_{\mathbb{B}}(\mathcal{P})) \rangle : \mathcal{P} \in \mathbb{P} \}$ are neutrosophic sets, then

(i) $A \subseteq B$ if $t_A(p) \le t_B(p)$, $i_A(p) \le i_B(p)$, $f_A(p) \ge f_B(p)$ for all $p \in \mathbb{P}$.

(ii)
$$A \cap B =$$

 $\left\{ \left(\mathcal{P}, \left(\min \left(t_{\mathbb{A}}(\mathcal{P}), t_{\mathbb{B}}(\mathcal{P}) \right), \min \left(i_{\mathbb{A}}(\mathcal{P}), i_{\mathbb{B}}(\mathcal{P}) \right), \max \left(f_{\mathbb{A}}(\mathcal{P}), f_{\mathbb{B}}(\mathcal{P}) \right) \right\} \right\} : \\ \left(N_{eu}R - CS \right) \left[7 \right] \text{ if } N_{eu} - cl \left(N_{eu} - \inf (\mathbb{A}) \right) = \mathbb{A}$

 $(iii) A \cup B =$

 $\left\{\left\langle \mathcal{P},\left(\max\left(t_{\mathbb{A}}(\mathcal{P}),t_{\mathbb{B}}(\mathcal{P})\right),\max\left(i_{\mathbb{A}}(\mathcal{P}),i_{\mathbb{B}}(\mathcal{P})\right),\min\left(\mathcal{F}_{\mathbb{A}}(\mathcal{P})\mathcal{F}_{\mathbb{B}}(\mathcal{P})\right)\right\}\right\}\left(\mathcal{P}_{\mathbb{B}}(\mathcal{P})\right)\right\}$

(iv)
$$\mathbb{A}^c = \left\{ \langle \, \mathcal{P}, \left(f_{\mathbb{A}}(\mathcal{P}) \,, 1 - i_{\mathbb{A}}(\mathcal{P}) \,, t_{\mathbb{A}}(\mathcal{P}) \, \right) \right\} : \, \mathcal{P} \in \mathbb{P} \right\}.$$

(v) $0_{N_{eu}} = \{\langle \mathcal{P}, (0,0,1) \rangle : \mathcal{P} \in \mathbb{P} \}$ and $1_{N_{eu}} = \{\langle \mathcal{P}, (1,1,0) \rangle : \mathcal{P} \in \mathbb{P} \}$.

Definition 2.3:[13] A neutrosophic topology $(N_{eu}T)$ on a non-empty set $\mathbb P$ is a family $\tau_{N_{eu}}$ of neutrosophic sets in $\mathbb P$ satisfying the following axioms,

- (i) $0_{N_{e_{\mathcal{U}}}}$, $1_{N_{e_{\mathcal{U}}}} \in \tau_{N_{e_{\mathcal{U}}}}$.
- (ii) $\mathbb{A}_1 \cap \mathbb{A}_2 \in \tau_{N_{e_1}}$ for any \mathbb{A}_1 , $\mathbb{A}_2 \in \tau_{N_{e_2}}$.
- (iii) $\bigcup \mathbb{A}_i \in \tau_{N_{eu}}$ for every family $\{ \mathbb{A}_i / i \in \Omega \}$ $\subseteq \tau_{N_{eu}}$.

In this case, the ordered pair $(\mathbb{P}, \tau_{N_{eu}})$ or simply \mathbb{P} is called a neutrosophic topological space $(N_{eu}\text{TS})$. The elements of $\tau_{N_{eu}}$ is neutrosophic open set $(N_{eu}-OS)$ and $\tau_{N_{eu}}{}^c$ is neutrosophic closed set $(N_{eu}-CS)$.

Definition 2.4: A neutrosophic set A of a N_{eu} TS $(\mathbb{P}, \tau_{N_{eu}})$ is said to be

- (i) a neutrosophic pre closed set $(N_{eu}P -$
- (CS) [7] if $N_{eu} cl(N_{eu} int(A)) \subseteq A$.
 - (ii) a neutrosophic semi closed set $(N_{eu}S -$
- (CS) [7] if $N_{eu} int(N_{eu} cl(A)) \subseteq A$.
 - (iii) a neutrosophic α closed set $(N_{eu}\alpha$ –
- CS) [7] if $N_{eu} cl(N_{eu} int(N_{eu} cl(A))) \subseteq A$.
 - (iv) a neutrosophic β closed set $(N_{eu}\beta$ –
- CS) [7] if $N_{eu} int (N_{eu} cl(N_{eu} cl(N_{$

(vi) a neutrosophic b – closed set $(N_{eu}b - n(S_A(p)))(h) = (N_{eu}b - n(A)) \cap (N_{eu}b - n(A)) \subseteq A$.

(vii) a neutrosophic semi α – closed set $(N_{eu}S\alpha - CS)$ [7] if $N_{eu} - int(N_{eu}\alpha - cl(A)) \subseteq A$.

(viii) a neutrosophic π – open set $(N_{eu}\pi - OS)$ [10] if $A = \bigcup \{ \mathcal{G} : \mathcal{G} \text{ is a } N_{eu}R - OS \text{ in } \mathbb{P} \}$.

Definition 2.5: Let A be a neutrosophic set in N_{eu} TS $(\mathbb{P}, \tau_{N_{eu}})$. Then,

- (1) $N_{eu} int(\mathbb{A}) = \bigcup \{ \mathcal{G} : \mathcal{G} \text{ is a } N_{eu} OS \text{ in } \mathbb{P} \text{ and } \mathcal{G} \subseteq \mathbb{A} \} [4].$
- (2) $N_{eu} cl(\mathbb{A}) = \bigcap \{ \mathcal{K} : \mathcal{K} \text{ is a } N_{eu} CS \text{ in } \mathbb{P} \text{ and } \mathbb{A} \subseteq \mathcal{K} \} [4].$

- $(3) N_{eu} \alpha int(A) = \bigcup \{ \mathcal{G} : \mathcal{G} \text{ is a } N_{eu}\alpha OS \text{ in } \mathbb{P} \text{ and } \mathcal{G} \subseteq A \} = A \cap N_{eu} int \left(N_{eu} \operatorname{cl}(N_{eu} \operatorname{int}(A)) \right) [7].$
- $(4) N_{eu} \alpha cl(\mathbb{A}) = \bigcap \{ \mathcal{K} : \mathcal{K} \text{ is a } N_{eu}\alpha CS \text{ in } \mathbb{P} \text{ and } \mathbb{A} \subseteq \mathcal{K} \}$ $= \mathbb{A} \cup N_{eu} cl(N_{eu} int(N_{eu} cl(\mathbb{A}))) [7]$
- $(5) N_{eu}\beta int(A) = A \cap N_{eu} cl(N_{eu} int(N_{eu} cl(A))), N_{eu}\beta cl(A) = A \cup N_{eu} int(N_{eu} cl(N_{eu} int(A)))$ [10].
- $(6) N_{eu}P int(A) = A \cap N_{eu} int(N_{eu} cl(A)) , N_{eu}P cl(A) = A \cup N_{eu} cl(A) = A \cup N_{eu}$
- $(7) N_{eu}S int(A) = A \cap N_{eu} cl(N_{eu} int(A)), N_{eu}S cl(A) = A \cup N_{eu} int(N_{eu} cl(A))$ [5].
- $\begin{array}{ll} (8) \ N_{eu}b int(\texttt{A}) = (N_{eu}S int(\texttt{A})) \cup (N_{eu}P int(\texttt{A})), N_{eu}b \\ cl(\texttt{A}) = (N_{eu}S cl(\texttt{A})) \cap (N_{eu}P cl(\texttt{A})) \ [5] \end{array}$

Definition 2.6: A neutrosophic set A of a N_{eu} TS $(\mathbb{P}, \tau_{N_{eu}})$ is said to be

- (1) a neutrosophic generalized closed set $(N_{eu}g-CS)$ [11] if $N_{eu}-cl(A)\subseteq \mathcal{G}$, whenever $A\subseteq \mathcal{G}$ and \mathcal{G} is $N_{eu}-OS$ in \mathbb{P} .
- (2) a neutrosophic generalized semi closed set $(N_{eu}gs CS)$ [11] if $N_{eu}S cl(A) \subseteq \mathcal{G}$, whenever $A \subseteq \mathcal{G}$ and \mathcal{G} is $N_{eu} OS$ in \mathbb{P} .
- (3) a neutrosophic generalized b closed set $(N_{eu}gb-CS)$ [9] if $N_{eu}b-cl(A)\subseteq \mathcal{G}$, whenever $A\subseteq \mathcal{G}$ and \mathcal{G} is $N_{eu}-OS$ in \mathbb{P} .
- (4) a neutrosophic α generalized closed set $(N_{eu}\alpha g CS)$ [7] if $N_{eu}\alpha cl(A) \subseteq G$, whenever $A \subseteq G$ and G is $N_{eu} OS$ in P.

- (5) a neutrosophic generalized α -closed set $(N_{eu}g\alpha CS)$ [8] if $N_{eu}\alpha cl(\mathbb{A}) \subseteq \mathcal{G}$, whenever $\mathbb{A} \subseteq \mathcal{G}$ and \mathcal{G} is $N_{eu}\alpha OS$ in \mathbb{P} .
- (6) a neutrosophic generalized β -closed set $(N_{eu}g\beta CS)$ [10] if $N_{eu}\beta cl(A) \subseteq \mathcal{G}$, whenever $A \subseteq \mathcal{G}$ and \mathcal{G} is $N_{eu} OS$ in \mathbb{P} .
- (7) a neutrosophic b generalized closed set $(N_{eu}bg CS)$ [8] if $N_{eu}b cl(A) \subseteq G$, whenever $A \subseteq G$ and G is $N_{eu}b OS$ in P.
- (8) a neutrosophic generalized regular closed set $(N_{eu}gR CS)$ [3] if $N_{eu}R cl(A) \subseteq G$, whenever $A \subseteq G$ and G is $N_{eu} OS$ in P.
- (9) a neutrosophic π -generalized beta closed set $(N_{eu}\pi g\beta CS)$ [10] if $N_{eu}\beta cl(A) \subseteq \mathcal{G}$, whenever $A \subseteq \mathcal{G}$ and \mathcal{G} is $N_{eu}\pi OS$ in \mathbb{P} .
- (10) a neutrosophic α^* open set $(N_{eu}\alpha^* OS)$ [1] if $A \subseteq N_{eu}\alpha$ int $(N_{eu} cl(N_{eu}\alpha int(A)))$

III.NEUTROSOPHIC $gs\alpha^*$ -CLOSED SETS **Definition 3.1:** A neutrosophic set A in a N_{eu} TS $(\mathbb{P}, \tau_{N_{eu}})$ is called a neutrosophic generalized semi alpha star closed set $(N_{eu}gs\alpha^* - CS)$ if $N_{eu}\alpha - int(N_{eu}\alpha - cl(A)) \subseteq N_{eu} - int(G)$, whenever $A \subseteq G$ and G is $N_{eu}\alpha^*$ - open set.

Theorem 3.2: Every $N_{eu} - CS$ is $N_{eu}gs\alpha^* - CS$, but not conversely.

Proof:

Let $A \subseteq W$, W is $N_{eu}\alpha^* - OS$ in $(\mathbb{P}, \tau_{N_{eu}})$. Since A is $N_{eu} - CS$, then $N_{eu} - cl(\mathbb{A}) = \mathbb{A}$ [14]. Now, $N_{eu}\alpha - int(N_{eu}\alpha - cl(\mathbb{A})) \subseteq N_{eu}\alpha - int(N_{eu} - cl(\mathbb{A})) \supseteq N_{eu} - int(N_{eu} - cl(\mathbb{A})) \supseteq N_{eu} - int(\mathbb{A}) \supseteq N_{eu} = int(\mathbb{A}) \supseteq N_{eu} \supseteq N_{eu} = int(\mathbb{A}) \supseteq N_{eu} \supseteq N_{$

$$\begin{split} &\{\langle \mathcal{P}, (0.8,0.7,0.5)\rangle\} \text{. Let } &\mathcal{G} = \\ &\{\langle \mathcal{P}, (0.4,0.2,0.9)\rangle\} \text{ be any } N_{eu}(\mathbb{P}) \text{. } N_{eu}\alpha^* - \\ &OS = N_{eu}\alpha - OS = \left\{0_{N_{eu}}, 1_{N_{eu}}, \mathbb{A}\right\} \quad \text{and } \\ &N_{eu}\alpha - CS = \left\{0_{N_{eu}}, 1_{N_{eu}}, \mathbb{A}^c\right\} \quad . \quad N_{eu}\alpha - \\ &cl(\mathcal{G}) = \mathbb{A}^c \cap 1_{N_{eu}} = \mathbb{A}^c \quad . \quad \text{Now } \quad , \quad N_{eu}\alpha - \\ &int(N_{eu}\alpha - cl(\mathcal{G})) = N_{eu}\alpha - int(\mathbb{A}^c) = \\ &0_{N_{eu}} \cup \mathbb{A} = \mathbb{A} \Rightarrow N_{eu}\alpha - int(N_{eu}\alpha - cl(\mathcal{G})) = \\ &\mathbb{A} \subseteq N_{eu} - int(\mathbb{A}) \text{. } N_{eu} - int(1_{N_{eu}}) = \mathbb{A} \text{. } 1_{N_{eu}} \\ &\text{whenever } \mathcal{G} \subseteq \mathbb{A} \text{. } 1_{N_{eu}} \text{. Hence } \mathcal{G} \text{ is } N_{eu}\mathcal{G}s\alpha^* - \\ &CS \text{. But } \mathcal{G} \text{ is not } N_{eu} - CS \text{. } \text{ because } N_{eu} - \\ &cl(\mathcal{G}) = \mathbb{A}^c \cap 1_{N_{eu}} = \mathbb{A}^c \neq \mathcal{G} \text{.} \end{split}$$

Theorem 3.4: Every $N_{eu}\alpha - CS$ is $N_{eu}gs\alpha^* - CS$, but not conversely.

Proof:

Let $A \subseteq W$, W is $N_{eu}\alpha^* - OS$ in $(\mathbb{P}, \tau_{N_{eu}})$. Since A is $N_{eu}\alpha - CS$, then $N_{eu} - cl$ $\left(N_{eu} - int(N_{eu} - cl(\mathbb{A}))\right) \subseteq \mathbb{A}$. Now, $N_{eu}\alpha - int(N_{eu}\alpha - cl(\mathbb{A})) \subseteq N_{eu}\alpha - int$ $\left(N_{eu} - cl(\mathbb{A})\right) \supseteq N_{eu} - int(N_{eu} - cl(\mathbb{A})) \subseteq N_{eu} - int$ $\left(N_{eu} - int(N_{eu} - cl(\mathbb{A}))\right) \supseteq N_{eu} - int$ $\left(N_{eu} - cl(N_{eu} - int(N_{eu} - cl(\mathbb{A}))\right) \subseteq N_{eu} - int$ $\left(N_{eu} - cl(N_{eu} - int(N_{eu} - cl(\mathbb{A}))\right) \subseteq N_{eu} - int$ $\left(N_{eu}\alpha - cl(\mathbb{A})\right) \subseteq N_{eu} - int$ $\left(N_{eu}\alpha - cl(\mathbb{A})\right) \subseteq N_{eu} - int$

Example 3.5: Let $\mathbb{P} = \{ \mathcal{p} \}$ and $\mathbb{A} = \{ \langle \mathcal{p}, (0.5,0.3,0.8) \rangle \}$ be $N_{eu}(\mathbb{P})$. $\tau_{N_{eu}} = \{ (0_{N_{eu}}, 1_{N_{eu}}, \mathbb{A}) \}$ is a N_{eu} TS on $(\mathbb{P}, \tau_{N_{eu}})$. $\mathbb{A}^c = \{ \langle \mathcal{p}, (0.8,0.7,0.5) \rangle \}$. Let $\mathcal{G} = \{ \langle \mathcal{p}, (0.7,0.8,0.7) \rangle \}$ be any $N_{eu}(\mathbb{P})$. $N_{eu}\alpha^* - OS = N_{eu}\alpha - OS = \{ (0_{N_{eu}}, 1_{N_{eu}}, \mathbb{A}) \}$ and $N_{eu}\alpha - CS = \{ (0_{N_{eu}}, 1_{N_{eu}}, \mathbb{A}^c) \}$. $N_{eu}\alpha - Cl(\mathcal{G}) = 1_{N_{eu}}$. Now , $N_{eu}\alpha - int(N_{eu}\alpha - Cl(\mathcal{G})) = N_{eu}\alpha - int(1_{N_{eu}}) = 1_{N_{eu}} \Rightarrow N_{eu}\alpha - int(N_{eu}\alpha - Cl(\mathcal{G})) = 1_{N_{eu}} \subseteq N_{eu} - int(1_{N_{eu}}) = 1_{N_{eu}}$ whenever $\mathcal{G} \subseteq 1_{N_{eu}}$. Hence ,

 \mathcal{G} is $N_{eu}gs\alpha^* - CS$. But \mathcal{G} is not $N_{eu}\alpha - CS$, because $N_{eu} - cl(N_{eu} - int(N_{eu} - cl(\mathcal{G}))) = 1_{N_{eu}} \nsubseteq \mathcal{G}$.

Theorem 3.6: Every $N_{eu}S - CS$ is $N_{eu}gs\alpha^* - CS$, but not conversely.

Proof:

Let $A \subseteq W$, W is $N_{eu}\alpha^* - OS$ in $(\mathbb{P}, \tau_{N_{eu}})$. Since A is $N_{eu}S - CS$, then $N_{eu} - int$ $(N_{eu} - cl(\mathbb{A})) \subseteq \mathbb{A}$. Now, $N_{eu}\alpha - int(N_{eu}\alpha - cl(\mathbb{A})) \subseteq N_{eu}\alpha - int(N_{eu}\alpha - cl(\mathbb{A})) \subseteq N_{eu}\alpha - int(N_{eu}\alpha - cl(\mathbb{A})) \subseteq N_{eu}\alpha - int(\mathbb{A}) \subseteq N_{eu}\alpha - int(\mathbb{A}) \subseteq N_{eu}\alpha - int(\mathbb{A}) \subseteq N_{eu}\alpha - int(\mathbb{A}) \subseteq N_{eu}\alpha - int(N_{eu}\alpha - cl(\mathbb{A})) \subseteq N_{eu}\alpha - int(N_{eu}\alpha - cl(\mathbb{A}))$

Let $\mathbb{P} = \{p\}$ and $\mathbb{A} =$ Example 3.7: $\{\langle p, (0.4, 0.5, 0.7) \rangle\}$ be $N_{eu}(\mathbb{P})$. $\tau_{N_{eu}} =$ $\left\{0_{N_{eu}},1_{N_{eu}},\mathbb{A}\right\}$ is a $N_{eu}\mathrm{TS}$ on $\left(\mathbb{P},\tau_{N_{eu}}\right)$. $\mathbb{A}^{c}=$ $\{\langle p, (0.7,0.5,0.4) \rangle\}$. Let $\{\langle p, (0.2,0.3,0.5) \rangle\}$ be any $N_{eu}(\mathbb{P})$. $N_{eu}\alpha^*$ – $OS = N_{eu}\alpha - OS = \{0_{N_{eu}}, 1_{N_{eu}}, A\}$ $N_{eu}\alpha - CS = \left\{0_{N_{eu}}, 1_{N_{eu}}, A^c
ight\} \qquad . \qquad N_{eu}\alpha - CS = \left\{0_{N_{eu}}, 1_{N_{eu}}, A^c\right\}$ $cl(\mathcal{G}) = A^c \cap 1_{N_{eu}} = A^c$. Now , $N_{eu}\alpha$ $int(N_{eu}\alpha - cl(\mathcal{G})) = N_{eu}\alpha - int(\mathbb{A}^c) =$ $0_{N_{eu}} \cup A = A \Rightarrow N_{eu}\alpha - int(N_{eu}\alpha - cl(G)) =$ $A \subseteq N_{eu} - int(1_{N_{eu}}) = 1_{N_{eu}}$ whenever $G \subseteq$ $1_{N_{ev}}$. Hence, \mathcal{G} is $N_{ev}gs\alpha^* - \mathcal{CS}$. But \mathcal{G} is not $N_{eu}S - CS$, because $N_{eu} - int(N_{eu}$ $cl(\mathcal{G})$ = $N_{eu} - int(A^c \cap 1_{N_{eu}}) = N_{eu}$ $int(\mathbb{A}^c) = 0_{N_{eu}} \cup \mathbb{A} = \mathbb{A} \nsubseteq \mathcal{G}$.

Theorem 3.8: Every $N_{eu}\alpha^* - CS$ is $N_{eu}gs\alpha^* - CS$, but not conversely.

Proof:

Let $A \subseteq W$, W is $N_{eu}\alpha^* - OS$ in $(\mathbb{P}, \tau_{N_{eu}})$. Since A is $N_{eu}\alpha^* - CS$, then $N_{eu}\alpha - cl$ $(N_{eu} - int(N_{eu}\alpha - cl(A))) \subseteq A$. Now, $N_{eu}\alpha - int(N_{eu}\alpha - cl(A))$ $\supseteq N_{eu} - cl(A)$
$$\begin{split} &\inf \left(N_{eu}\alpha - cl(\mathbb{A}) \right) \subseteq N_{eu} - cl \left(N_{eu} - int \left(N_{eu}\alpha - cl(\mathbb{A}) \right) \right) \supseteq N_{eu}\alpha - cl \left(N_{eu} - int \left(N_{eu}\alpha - cl(\mathbb{A}) \right) \right) \subseteq \mathbb{A} \supseteq N_{eu} - int(\mathbb{A}) \subseteq \\ &N_{eu} - int(\mathbb{W}) \Rightarrow N_{eu}\alpha - int \left(N_{eu}\alpha - cl(\mathbb{A}) \right) \subseteq N_{eu} - int(\mathbb{W}). \quad \text{Hence} \quad , \quad \mathbb{A} \quad \text{is} \\ &N_{eu}gs\alpha^* - CS \quad . \end{split}$$

Example 3.9: Let $\mathbb{P} = \{p\}$ and $\mathbb{A} = \{p\}$

 $\begin{array}{lll} \{\langle \mathcal{P}, (0.2,0.4,0.6)\rangle\} & \text{be} & N_{eu}(\mathbb{P}) & . & \tau_{N_{eu}} = \\ \{0_{N_{eu}}, 1_{N_{eu}}, \mathbb{A}\} & \text{is a} & N_{eu} \text{TS on } \left(\mathbb{P}, \tau_{N_{eu}}\right) & . \mathbb{A}^c = \\ \{\langle \mathcal{P}, (0.6,0.6,0.2)\rangle\} & . & \text{Let} & \mathcal{G} = \\ \{\langle \mathcal{P}, (0.4,0.8,0.7)\rangle\} & \text{be any } N_{eu}(\mathbb{P}) & . & N_{eu}\alpha^* - \\ OS & = N_{eu}\alpha - OS & = & \left\{0_{N_{eu}}, 1_{N_{eu}}, \mathbb{A}^c\right\} & . & N_{eu}\alpha - \\ cl(\mathcal{G}) & = 1_{N_{eu}} & . & \text{Now} & , & N_{eu}\alpha - int(N_{eu}\alpha - \\ cl(\mathcal{G})) & = N_{eu}\alpha - int(1_{N_{eu}}) = 1_{N_{eu}} \Rightarrow N_{eu}\alpha - \\ int(N_{eu}\alpha - cl(\mathcal{G})) & = 1_{N_{eu}} & \subseteq N_{eu} - \\ int(1_{N_{eu}}) & = 1_{N_{eu}} & \text{whenever } \mathcal{G} & \subseteq 1_{N_{eu}} & . \text{Hence } , \\ \mathcal{G} & \text{is } N_{eu} gs\alpha^* - CS & . & \text{But } \mathcal{G} & \text{is not } N_{eu}\alpha^* - CS & , \\ \text{because} & N_{eu}\alpha - cl & \left(N_{eu} - int(N_{eu}\alpha - \\ cl(\mathcal{G})\right) & = N_{eu}\alpha - cl & \left(N_{eu} - int(1_{N_{eu}})\right) = \\ N_{eu}\alpha - cl\left(1_{N_{eu}}\right) & = 1_{N_{eu}} \not\subseteq \mathcal{G} & . \end{array}$

Proof:

CS, but not conversely.

Let $A \subseteq W$, W is $N_{eu}\alpha^* - OS$ in $(\mathbb{P}, \tau_{N_{eu}})$. Since A is $N_{eu}R - CS$, then $N_{eu} - cl$ $(N_{eu} - int(\mathbb{A})) = \mathbb{A}$. Now, $N_{eu}\alpha - int(N_{eu}\alpha - cl(\mathbb{A})) \subseteq N_{eu}\alpha - int(N_{eu}\alpha - cl(\mathbb{A})) = \mathbb{A} \supseteq N_{eu} - int(\mathbb{A}) \subseteq N_{eu} - int(\mathbb{A}) = \mathbb{A} \supseteq N_{eu} - int(\mathbb{A}) \subseteq N_{eu} - int(\mathbb{A}) \subseteq N_{eu}\alpha - int(N_{eu}\alpha - cl(\mathbb{A})) \subseteq N_{eu} - int(\mathbb{A})$. Hence, \mathbb{A} is $N_{eu}gs\alpha^* - CS$. Example 3.11: Let $\mathbb{P} = \{p\}$ and $\mathbb{A} = \{\langle p, (0.4, 0.6, 0.2) \rangle\}$ be $N_{eu}(\mathbb{P})$. $\tau_{N_{eu}} = \{0, 0.4, 0.6, 0.2\}$ is a $N_{eu}TS$ on $(\mathbb{P}, \tau_{N_{eu}})$. Let

Theorem 3.10: Every $N_{eu}R - CS$ is $N_{eu}gs\alpha^* -$

 $\mathcal{G} = \{ \langle p, (0.1, 0.3, 0.5) \rangle \}$ be any $N_{eu}(\mathbb{P})$. Here $N_{eu}\alpha^* - OS =$ $N_{eu}\alpha - OS =$ $\left\{0_{N_{eu}},1_{N_{eu}},A,E\right\}$ and $N_{eu}\alpha - CS =$ $\{0_{N_{ev}}, 1_{N_{ev}}, \mathbb{A}^c, D\}$, where $E = \{\langle p, ([0.4,1],$ [0.6,1], [0,0.2]) $\}$, D = $\{\langle \mathcal{P}, ([0,0.2], [0,0.4], [0.4,1]) \rangle\} \,. \ \, \text{Also} \ \, , \ \, \not{\!\!\!\!A}^c =$ F = $\{\langle p, (0.2,0.4,0.4) \rangle\}$ and $\{\langle p, ([0.1,0.2], [0.3,0.4], [0.4,0.5]) \rangle\}$. Now, $(N_{eu}\alpha - cl(\mathcal{G})) = N_{eu}\alpha$ $int(\mathbb{A}^c \cap F \cap 1_{N_{eu}}) = N_{eu}\alpha - int(F) =$ $0_{N_{eu}} \Rightarrow N_{eu}\alpha - int \left(N_{eu}\alpha - cl(\mathcal{G})\right) = 0_{N_{eu}} \subseteq$ $N_{eu} - int(E)$, $N_{eu} - int(A)$, N_{eu} $int(1_{N_{ey}}) = A, 1_{N_{ey}}, \text{ where } G \subseteq A, E, 1_{N_{ey}}.$ Hence, G is $N_{eu}gs\alpha^* - CS$. But G is not $N_{eu}R - CS$, because $N_{eu} - cl$ $(N_{eu}$ $int(\mathcal{G})$) = $N_{eu} - cl(0_{N_{eu}}) = 0_{N_{eu}} \neq \mathcal{G}$. **Theorem 3.12**: Every $N_{eu}g\alpha - CS$ is $N_{eu}gs\alpha^* - CS$, but not conversely.

Proof:

Let $A\subseteq W$, W is $N_{eu}\alpha^*$ -OS in $(\mathbb{P}, \tau_{N_{eu}})$. Since A is $N_{eu}g\alpha - CS$, then $N_{eu}\alpha - cl(A) \subseteq M$, whenever $A \subseteq M$, M is $N_{eu}\alpha - OS$. Now, $N_{eu}\alpha - int(N_{eu}\alpha - cl(A)) \subseteq N_{eu}\alpha - int$ (M) $\supseteq N_{eu} - int(M) \supseteq N_{eu} - int(A) \subseteq N_{eu}$ $int(W) \Rightarrow N_{eu}\alpha - int(N_{eu}\alpha - cl(A))$ $N_{eu} - int(W)$. Hence, A is $N_{eu}gs\alpha^* - CS$. **Example 3.13:** Let $\mathbb{P} = \{p\}$ and $\mathbb{A} = \{p\}$ $\{\langle p, (0.3,0.2,0.8) \rangle\}$ be $N_{eu}(\mathbb{P})$. $\tau_{N_{eu}} =$ $\left\{0_{N_{eu}},1_{N_{eu}},\mathbb{A}\right\}$ is a $N_{eu}\mathrm{TS}$ on $\left(\mathbb{P},\tau_{N_{eu}}\right)$. $\mathbb{A}^{c}=$ $\{\langle p, (0.8, 0.8, 0.3) \rangle\}$. Let $\{\langle \mathcal{P}, (0.1,0.2,0.9) \rangle\}$ be any $N_{eu}(\mathbb{P})$. $N_{eu}\alpha^*$ – $OS = N_{eu}\alpha - OS = \left\{0_{N_{eu}}, 1_{N_{eu}}, A\right\}$ $N_{eu}\alpha - CS = \{0_{N_{eu}}, 1_{N_{eu}}, A^c\}$. Now, $N_{eu}\alpha$ $int(N_{eu}\alpha - cl(\mathcal{G})) = N_{eu}\alpha - int(A^c \cap$ $(1_{N_{en}}) = N_{eu}\alpha - int(\mathbb{A}^c) = \mathbb{A} \cup 0_{N_{en}} = \mathbb{A} \Rightarrow$ $N_{eu}\alpha - int(N_{eu}\alpha - cl(\mathcal{G})) = A \subseteq N_{eu}$ int(A), $N_{eu} - int(1_{N_{eu}}) = A$, $1_{N_{eu}}$ where $G \subseteq$

A, $1_{N_{eu}}$. Hence, $\mathcal G$ is $N_{eu}gs\alpha^*-CS$. But $\mathcal G$ is not $N_{eu}g\alpha-CS$, because $N_{eu}\alpha-cl$ ($\mathcal G$) = $\mathbb A^c\not\subseteq \mathbb A$, when $\mathcal G\subseteq \mathbb A$.

Theorem 3.14: Every $N_{eu}S\alpha - CS$ is $N_{eu}gs\alpha^* - CS$, but not conversely.

Proof:

Let $A\subseteq W$, W is $N_{eu}\alpha^* - OS$ in $(\mathbb{P}, \tau_{N_{eu}})$. Since A is $N_{eu}S\alpha - CS$, then $N_{eu} - int$ $(N_{eu}\alpha - cl(A)) \subseteq A$. Now , $int(N_{eu}\alpha - cl(A)) \supseteq N_{eu} - int(N_{eu}\alpha \supseteq N_{eu} - int(A) \subseteq N_{eu}$ $int(W) \Rightarrow N_{eu}\alpha - int(N_{eu}\alpha - cl(A))$ $N_{eu} - int(W)$. Hence, A is $N_{eu}gs\alpha^* - CS$. **Example 3.15:** Let $\mathbb{P} = \{p\}$ and $\mathbb{A} = \{p\}$ $\{\langle p, (0.4,0.3,0.6) \rangle\}$ be $N_{eu}(\mathbb{P})$. $\tau_{N_{eu}} =$ $\{0_{N_{eu}}, 1_{N_{eu}}, A\}$ is a N_{eu} TS on $(\mathbb{P}, \tau_{N_{eu}})$. $A^c =$ $\{\langle p, (0.6,0.7,0.4) \rangle\}$. Let $\{\langle p, (0.6,0.9,0.9) \rangle\}$ be any $N_{eu}(\mathbb{P})$. $N_{eu}\alpha^*$ – $OS = N_{eu}\alpha - OS = \left\{0_{N_{eu}}, 1_{N_{eu}}, A\right\}$ $N_{eu}\alpha - CS = \{0_{N_{eu}}, 1_{N_{eu}}, A^c\}$. Now, $N_{eu}\alpha$ $int(N_{eu}\alpha - cl(\mathcal{G})) = N_{eu}\alpha - int(1_{N_{eu}}) = 1_{N_{eu}}$ $\Rightarrow N_{eu}\alpha - int(N_{eu}\alpha - cl(\mathcal{G})) = 1_{N_{eu}} \subseteq N_{eu} - int(N_{eu}\alpha - cl(\mathcal{G})) = 1_{N_{eu}} \subseteq N_{eu}$ $int(1_{N_{eu}}) = 1_{N_{eu}}$ whenever $\mathcal{G} \subseteq 1_{N_{eu}}$. Hence, G is $N_{eu}gs\alpha^* - CS$. But G is not $N_{eu}S\alpha - CS$, because $N_{eu} - int (N_{eu}\alpha - cl(\mathcal{G})) = N_{eu} - int$ $(1_{N_{eu}}) = 1_{N_{eu}} \not\subseteq \mathcal{G} .$

Theorem 3.16: Every $N_{eu}gs\alpha^* - CS$ is $N_{eu}\beta - CS$, but not conversely.

Proof:

Let $A \subseteq W$, W is $N_{eu}\alpha^* - OS$ in $(\mathbb{P}, \tau_{N_{eu}})$. Since A is $N_{eu}gs\alpha^* - CS$, then $N_{eu}\alpha - int$ $(N_{eu}\alpha - cl(A)) \subseteq N_{eu} - int(W)$. Now, $N_{eu} - int(N_{eu} - cl(N_{eu} - int(A))) \subseteq N_{eu} - int(N_{eu}\alpha - cl(A)) \supseteq N_{eu} - int(N_{eu}\alpha - cl(A)) \subseteq N_{eu}\alpha - int(N_{eu}\alpha - cl(A)) \subseteq N_{eu}\alpha - int(M_{eu}\alpha - cl(A))$ $int\left(N_{eu}-cl(N_{eu}-int(\mathbb{A}))\right)\subseteq\mathbb{A}$. Hence , \mathbb{A} is $N_{eu}\beta-CS$.

Example 3.17: Let $\mathbb{P} = \{p\}$ and $\mathbb{A} = \{p\}$ $\{\langle \mathcal{P}, (0.7, 0.4, 0.6) \rangle\}$ be $N_{eu}(\mathbb{P})$. $\tau_{N_{eu}} =$ $\{0_{N_{eu}}, 1_{N_{eu}}, A\}$ is a N_{eu} TS on $(\mathbb{P}, \tau_{N_{eu}})$. $A^c =$ $\{\langle p, (0.6,0.6,0.7) \rangle\}$. Let $\{\langle \mathcal{P}, (0.4, 0.2, 0.6)\rangle\}$ be any $N_{eu}(\mathbb{P})$. Since , $N_{eu} - int(N_{eu} - cl(N_{eu} - int(\mathcal{G}))) = 0_{N_{eu}} \subseteq$ ${\mathcal G}$. Hence , ${\mathcal G}$ is $N_{eu}{\mathcal B}-{\mathcal C}{\mathcal S}$. But ${\mathcal G}$ is not $N_{eu}gs\alpha^* - CS$. Also, $N_{eu}\alpha^* - OS = N_{eu}\alpha OS = \{0_{N_{eu}}, 1_{N_{eu}}, A, D, E\}, N_{eu}\alpha - CS = \{0, 0, 0\}, N_$ $\{0_{N_{eu}}, 1_{N_{eu}}, \mathbb{A}^c, F, H\}$, where ([0.7,1], [0.6,1], [0,0.6]), ([0.7,1], [0.4,0.5], [0,0.6]), $F = \{\langle p, f \rangle \}$ ([0,0.6], [0,0.4], [0.7,1]), $H = \{\langle p, \rangle \}$ ([0,0.6], [0.5,0.6], [0.7,1]) . Now, $N_{eu}\alpha - int(N_{eu}\alpha - cl(\mathcal{G})) = N_{eu}\alpha$ $int(1_{N_{eu}}) = 1_{N_{eu}} \Rightarrow N_{eu}\alpha - int(N_{eu}\alpha$ $cl(\mathcal{G})$) = $1_{N_{eu}} \nsubseteq N_{eu} - int(A), N_{eu} - int(D)$, $N_{eu} - int(E) = A$, whenever $G \subseteq A$, D, E. Hence, \mathcal{G} is not $N_{eu}gs\alpha^* - CS$.

Theorem 3.18: Every $N_{eu}gs\alpha^* - CS$ is $N_{eu}gs - CS$, but not conversely.

Proof:

Let $A \subseteq M$, M is $N_{eu} - OS$ in $(\mathbb{P}, \tau_{N_{eu}})$. Since A is $N_{eu}gs\alpha^* - CS$, then $N_{eu}\alpha - int$ $(N_{eu}\alpha - cl(\mathbb{A})) \subseteq N_{eu} - int(\mathbb{W})$, whenever $A \subseteq W$, W is $N_{eu}\alpha^* - OS$. Since every $N_{eu} - OS$ is $N_{eu}\alpha^* - OS$, then W = M. Now, $N_{eu}S - cl(\mathbb{A}) = \mathbb{A} \cup (N_{eu} - int(N_{eu} - cl(\mathbb{A}))) \subseteq \mathbb{A} \cup (N_{eu}\alpha - int(N_{eu}\alpha - cl(\mathbb{A}))) \subseteq \mathbb{A} \cup (N_{eu}\alpha - int(N_{eu}\alpha - cl(\mathbb{A}))) \subseteq \mathbb{A} \cup (N_{eu}\alpha - int(\mathbb{W})) \subseteq \mathbb{W} = M \Rightarrow N_{eu}S - cl(\mathbb{A}) \subseteq M$, whenever $\mathbb{A} \subseteq M$, \mathbb{M} is

 $N_{eu}-OS$ in $(\mathbb{P}, \tau_{N_{eu}})$. Hence , A is $N_{eu}gs-CS$.

Example 3.19: Let $\mathbb{P} = \{ p \}$ and $\mathbb{A} = \{ \langle p, (0.4,0.6,0.8) \rangle \}$ be $N_{eu}(\mathbb{P})$. $\tau_{N_{eu}} = \{ 0_{N_{eu}}, 1_{N_{eu}}, \mathbb{A} \}$ is a N_{eu} TS on $(\mathbb{P}, \tau_{N_{eu}})$. $\mathbb{A}^c = \{ \langle p, (0.8,0.4,0.4) \rangle \}$. Let $\mathcal{G} = \{ \langle p, (0.9,0.4,0.2) \rangle \}$ be any $N_{eu}(\mathbb{P})$. Since , $N_{eu}S - cl(\mathcal{G}) = \mathcal{G} \cup (N_{eu} - int(N_{eu} - cl(\mathcal{G}))) = \mathcal{G} \cup N_{eu} - int(1_{N_{eu}}) = \mathcal{G} \cup 1_{N_{eu}} = \mathcal{G} \cup \mathcal{G}$

Theorem 3.20: Every $N_{eu}gs\alpha^* - CS$ is $N_{eu}gb - CS$, but not conversely.

 \subseteq

 $\{\langle \mathcal{P}, ([0.9,1],[0.6,1],[0,0.2])\rangle\}$. Hence, \mathcal{G} is

 \mathcal{G}

not $N_{eu}gs\alpha^* - CS$.

Proof:

Let $A \subseteq M$, M is $N_{eu} - OS$ in $(\mathbb{P}, \tau_{N_{eu}})$. Since A is $N_{eu}gs\alpha^* - CS$, then $N_{eu}\alpha - int$ $(N_{eu}\alpha - cl(A)) \subseteq N_{eu} - int(W)$, whenever $A \subseteq W$, W is $N_{eu}\alpha^* - OS$. Since every $N_{eu} - OS$ is $N_{eu}\alpha^* - OS$, then W = M. Now, $N_{eu}b - cl$ $(A) = N_{eu}S - cl$ $(A) \cap N_{eu}P - cl$ $(A) = A \cup (N_{eu} - int(N_{eu} - N_{eu}))$.

Proof:

 $cl(A)) \cap (N_{eu} - cl(N_{eu} - int(A))) \supseteq$ $A \cup ((N_{eu} - int(N_{eu} - cl(A))) \cap (N_{eu} - cl(A)))$ int(A)) $\subseteq A \cup (N_{eu} - int(N_{eu} - cl(A))) \subseteq$ $A \cup (N_{eu}\alpha - int(N_{eu} - cl(A))) \supseteq$ $A \cup (N_{eu}\alpha - int(N_{eu}\alpha - cl(A))) \subseteq$ $A \cup (N_{eu} - int(W)) \subseteq W = M \implies N_{eu}b - M$ $cl(A) \subseteq M$, whenever $A \subseteq M$, M is N_{eu} – OS in $(\mathbb{P}, \tau_{N_{en}})$. Hence, A is $N_{eu}gb - CS$. **Example 3.21:** Let $\mathbb{P} = \{p\}$ and $\mathbb{A} = \{p\}$ $\{\langle \mathcal{P}, (0.6,0.8,0.4) \rangle\}$ be $N_{eu}(\mathbb{P})$. $\tau_{N_{eu}} =$ $\left\{0_{N_{eu}},1_{N_{eu}},\mathbb{A}\right\}$ is a $N_{eu}\mathsf{TS}$ on $\left(\mathbb{P},\tau_{N_{eu}}\right)$. $\mathbb{A}^c=$ $\{\langle p, (0.4,0.2,0.6) \rangle\}$. Let $\{\langle p, (0.2,0.7,0.4) \rangle\}$ be any $N_{eu}(\mathbb{P})$. Now, $N_{eu}b - cl(\mathcal{G}) = \mathcal{G} \cup ((N_{eu} - int(N_{eu} - int$ $cl(\mathcal{G})$) $\cap (N_{eu} - cl(N_{eu} - int(\mathcal{G}))) =$ $\mathcal{G} \cup \left(\left(N_{eu} - int(1_{N_{eu}}) \right) \cap \left(N_{eu} - \right) \right)$ $cl(0_{N_{eu}})) = \mathcal{G} \cup (0_{N_{eu}} \cap 1_{N_{eu}}) = \mathcal{G} \cup$ $0_{N_{eu}} = \mathcal{G} \subseteq \mathbb{A} \text{ , } 1_{N_{eu}}, \text{ whenever } \mathcal{G} \subseteq \mathbb{A} \text{ , } 1_{N_{eu}} \text{ .}$ Hence, G is $N_{eu}gb - CS$. But G is not $N_{eu}gs\alpha^* - CS$. Also, $N_{eu}\alpha^* - OS = N_{eu}\alpha OS = \left\{ 0_{N_{eu}}, 1_{N_{eu}}, A, D \right\}, N_{eu}\alpha - CS = 0$ $\left\{ \begin{array}{l} 0_{N_{en}}, \ 1_{N_{en}}, \ \mathbb{A}^{c}, \ E \end{array} \right\}$, where $D = \left\{ \left\langle \ \mathcal{P} \right\rangle \right\}$ ([0.6,1],[0.8,1],[0,0.4]), E = $\{\langle p, ([0,0.4], [0,0.2], [0.6,1]) \rangle\}$. $N_{eu}\alpha - int(N_{eu}\alpha - cl(\mathcal{G})) = N_{eu}\alpha$ $int(1_{N_{eu}}) = 1_{N_{eu}} \rightarrow N_{eu}\alpha - int(N_{eu}\alpha$ $cl(\mathcal{G})$ = $1_{N_{eu}} \nsubseteq N_{eu} - int(A), N_{eu}$ int(D) = A whenever $G \subseteq A$, D. Hence, G is not $N_{eu}gs\alpha^* - CS$. **Theorem 3.22:** Every $N_{eu}gs\alpha^* - CS$ $N_{eu}g\beta - CS$, but not conversely.

Let $A \subseteq M$, M is $N_{eu} - OS$ in $(\mathbb{P}, \tau_{N_{eu}})$. Since is $N_{eu}gs\alpha^* - CS$, then $N_{eu}\alpha - int$ $(N_{eu}\alpha - cl(A)) \subseteq N_{eu} - int(W)$ whenever $A \subseteq W$, W is $N_{eu}\alpha^* - OS$. Since every $N_{eu} - OS$ is $N_{eu}\alpha^* - OS$, then W = M. Now, $N_{eu}\beta - cl(A) = A \cup (N_{eu} - int(N_{eu} - int(N$ $cl(N_{eu} - int(A))) \subseteq A \cup (N_{eu}$ $int(N_{eu}-cl(A))\subseteq A \cup (N_{eu}\alpha$ $int(N_{eu}-cl(A))$ $\supseteq A \cup (N_{eu}\alpha$ $int\big(N_{eu}\alpha-cl(\mathbb{A})\big)\big)\subseteq\mathbb{A}\cup\big(N_{eu}-int(\mathbb{W})\big)\subseteq$ $W = M \Rightarrow N_{eu}\beta - cl (A) \subseteq M$, whenever $A \subseteq$ M, M is $N_{eu}-OS$ in $(\mathbb{P}, au_{N_{eu}})$. Hence, A is $N_{eu}g\beta - CS$. **Example 3.23:** Let $\mathbb{P} = \{p\}$ and $\mathbb{A} = \{p\}$ $\{\langle p, (0.3,0.8,0.6) \rangle\}$ be $N_{eu}(\mathbb{P})$. $\tau_{N_{eu}} =$ $\{0_{N_{eu}}, 1_{N_{eu}}, A\}$ is a N_{eu} TS on $(\mathbb{P}, \tau_{N_{eu}})$. $A^c =$ $\{\langle p, (0.6,0.2,0.3) \rangle\}$ Let $\{\langle p, (0.8,0.1,0.5)\rangle\}$ be any $N_{eu}(\mathbb{P})$. Since, $N_{eu}\beta - cl(G) =$ $G \cup (N_{eu} - int(N_{eu} - cl(N_{eu} - int(G)))) =$ $\cup \left(N_{eu} - int\left(N_{eu} - cl(0_{N_{eu}})\right)\right) = \mathcal{G} \cup$ $\left(N_{eu}-int(0_{N_{eu}})\right)=\mathcal{G}\cup 0_{N_{eu}}=\mathcal{G}\subseteq 1_{N_{eu}},$ when $\mathcal{G} \subseteq 1_{N_{eu}}$. Hence, \mathcal{G} is $N_{eu}g\beta - CS$. But is not $N_{eu}gs\alpha^* - CS$. Also, $N_{eu}\alpha^* - OS =$ $N_{eu}\alpha - OS = \{0_{N_{eu}}, 1_{N_{eu}}, A, D, E, F\}$ $N_{eu}\alpha - CS = \{0_{N_{eu}}, 1_{N_{eu}}, A^c, L, M, N\}, \text{ where}$ $D = \{ \langle p, ([0.6, 1], [0.8, 1], [0, 0.3]) \rangle \}$ $E = \{ \langle p, ([0.6, 1], [0.8, 1], [0.4, 0.6]) \rangle \}, F = \{ \langle p, ([0.6, 1], [0.8, 1], [0.4, 0.6]) \rangle \}$ $\{\langle p, ([0.3, 0.5], [0.8, 1], [0, 0.6]) \}\}, L =$ $\{\langle p, ([0, 0.3], [0, 0.2], [0.6, 1]) \rangle\}, M =$ $\{\langle p, ([0,0.6], [0,0.2], [0.3,0.5]) \rangle\}$ $\{\langle p, ([0.4,0.6], [0,0.2], [0.6,1]) \}\}$. Now, $N_{eu}\alpha - int(N_{eu}\alpha - cl(\mathcal{G})) = N_{eu}\alpha$ $int(1_{N_{eu}}) = 1_{N_{eu}} \Rightarrow N_{eu}\alpha - int(N_{eu}\alpha -$

$$\begin{split} cl(\mathcal{G})\big) &= 1_{N_{eu}} \not\subseteq N_{eu} - int(\mathcal{O}), N_{eu} - \\ int(R) &= \not\land \text{ whenever } \mathcal{G} \subseteq \mathcal{O}, \ \mathcal{R} \ , \ \mathcal{O} = \\ &\{\langle \mathcal{P}, ([0.8,1], [0.8,1], [0,0.3])\rangle\} \ \ \text{and} \ \ R = \\ &\{\langle \mathcal{P}, ([0.8,1], [0.8,1], [0.4,0.5])\rangle\} \ . \ \text{Hence} \ , \ \mathcal{G} \ \text{is} \\ &\text{not} \ N_{eu} gs\alpha^* - CS \ . \end{split}$$

Theorem 3.24: Every $N_{eu}gs\alpha^* - CS$ is $N_{eu}\pi g\beta - CS$, but not conversely.

Let $A \subseteq M$, M is $N_{eu}\pi - OS$ in $(\mathbb{P}, \tau_{N_{eu}})$. Since

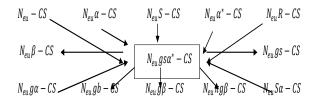
Proof:

A is $N_{eu}gs\alpha^* - CS$, then $N_{eu}\alpha - int (N_{eu}\alpha$ cl(A) $\subseteq N_{eu} - int(W)$, whenever $A \subseteq W$, W is $N_{eu}\alpha^* - OS$. Since every $N_{eu}\pi - OS$ is $N_{eu} - OS$, then M is $N_{eu} - OS$. Also, since every $N_{eu} - OS$ is $N_{eu}\alpha^* - OS$, then W = M. Now by theorem 3.22 , $N_{eu}\beta - cl$ (A) \subseteq M , whenever $A \subseteq M$, M is $N_{eu}\pi - OS$ in $(\mathbb{P}, \tau_{N_{eu}})$. Hence , A is $N_{eu}\pi g\beta - CS$. **Example 3.25:** Let $\mathbb{P} = \{p\}$ and $\mathbb{A} = \{p\}$ $\{\langle p, (0.7,0.6,0.5) \rangle\}$ be $N_{eu}(\mathbb{P})$. $\tau_{N_{eu}} =$ $\{0_{N_{eu}}, 1_{N_{eu}}, A\}$ is a N_{eu} TS on $(\mathbb{P}, \tau_{N_{eu}})$. $A^c =$ $\{\langle p, (0.5, 0.4, 0.7) \rangle\}$. Let $\{\langle \mathcal{P}, (0.9, 0.2, 0.4) \rangle\}$ be any $N_{eu}(\mathbb{P})$. Since , $N_{eu}\beta - cl(G) = G \cup (N_{eu} - int(N_{eu} - int(N_{eu}$ $cl(N_{eu} - int(\mathcal{G}))) = \mathcal{G}$ $\bigcup (N_{eu}$ $int(N_{eu} - cl(0_{N_{eu}})) = \mathcal{G} \cup (N_{eu}$ $int(0_{N_{ev}}) = G \cup 0_{N_{ev}} = G \subseteq 1_{N_{ev}}$, when $G \subseteq$ $1_{N_{eu}}$ & $N_{eu}\pi - OS = \{0_{N_{eu}}\}$. Hence , \mathcal{G} is $N_{eu}\pi g\beta - CS$. But is not $N_{eu}gs\alpha^* - CS$. Also, $N_{eu}\alpha^* - OS = N_{eu}\alpha - OS = \{0_{N_{eu}}, 1_{N_{eu}}, A\}$ D, $N_{eu}\alpha - CS = \{0_{N_{eu}}, 1_{N_{eu}}, \mathbb{A}^c, E\}$, where $D = \{ \langle p, ([0.7,1], [0.6,1], [0,0.5]) \rangle \}$, E = $\{\langle p, ([0,0.5], [0,0.4], [0.7,1]) \rangle\}$. Now, $N_{eu}\alpha$ – $int(N_{eu}\alpha - cl(\mathcal{G})) = N_{eu}\alpha - int(1_{N_{eu}}) = 1_{N_{eu}}$ $\Rightarrow N_{eu}\alpha - int(N_{eu}\alpha - cl(\mathcal{G})) = 1_{N_{eu}} \nsubseteq N_{eu} - int(N_{eu}\alpha - cl(\mathcal{G})) = 1_{N_{eu}} \coprod N_{eu} - int(N_{eu}\alpha - cl(\mathcal{G})) = 1_{N_{eu}\alpha - cl(\mathcal{G})} = 1_{N_{eu}\alpha - cl(\mathcal{$

int(F) = A whenever $G \subseteq F$, F =

 $\{\langle \mathcal{P}, ([0.9,1], [0.6,1], [0,0.4]) \rangle\}$. Hence , \mathcal{G} is not $N_{eu}gs\alpha^* - CS$.

Inter-relationship 3.26:



Theorem 3.27: Let $(\mathbb{P}, \tau_{N_{eu}})$ be a N_{eu} TS. Then intersection of two $N_{eu}gs\alpha^* - CS$ is a $N_{eu}gs\alpha^* - CS$ in N_{eu} TS $(\mathbb{P}, \tau_{N_{eu}})$.

Proof:

Let A and B are $N_{eu}gs\alpha^* - CS$ in $(\mathbb{P}, \tau_{N_{eu}})$. Then $N_{eu}\alpha - int \left(N_{eu}\alpha - cl(A)\right) \subseteq N_{eu}$ int(W), whenever $A \subseteq W$, W is $N_{eu}\alpha^* - OS$ and $N_{eu}\alpha - int \left(N_{eu}\alpha - cl(\mathbb{B})\right) \subseteq N_{eu}$ int(M), whenever $B \subseteq M$, M is $N_{eu}\alpha^* - OS$. Since W is $N_{eu}\alpha^* - OS$, then W $\subseteq N_{eu}\alpha$ int $(N_{eu} - cl (N_{eu}\alpha - int(W)))$ and M is $N_{eu}\alpha^* - OS$, then $M \subseteq N_{eu}\alpha - int (N_{eu} - int)$ $cl(N_{eu}\alpha - int(M))$. Now, $W \cap M \subseteq$ $(N_{eu}\alpha - int (N_{eu} - cl(N_{eu}\alpha$ $int(W)))) \cap (N_{eu}\alpha - int (N_{eu}$ $cl(N_{eu}\alpha - int(M)))$ $\supseteq (N_{eu} - int(N_{eu} - int))$ $cl(N_{eu} - int(W))) \cap (N_{eu} - int(N_{eu} - int(N_{eu} - int(N_{eu} - int(M_{eu} - int(M_{eu$ $cl(N_{eu} - int(M))) = N_{eu} - int(N_{eu} - int(N_{eu} - int(M_{eu} - int(M_{eu}$ $cl(N_{eu} - int(W)) \cap (N_{eu} - cl(N_{eu}$ $int(M)))) \supseteq N_{eu} - int(N_{eu} - cl((N_{eu}$ $int(W)) \cap (N_{eu} - int(M))) = N_{eu}$ $int (N_{eu} - cl(N_{eu} - int(W \cap M))) \Rightarrow$

 $W \cap M \subseteq N_{eu}\alpha - int (N_{eu} - cl(N_{eu}\alpha$ $int(W \cap M))$ \Rightarrow $W \cap M$ is $N_{eu}\alpha^* - OS$. Now, $(N_{eu}\alpha - int (N_{eu}\alpha - cl(A))) \cap$ $(N_{e_{\mathcal{U}}}\alpha - int (N_{e_{\mathcal{U}}}\alpha - cl(\mathbb{B}))) \subseteq (N_{e_{\mathcal{U}}}$ int(W)) $\cap (N_{eu} - int(M)) = N_{eu} - int(W \cap M)$ $\mathbb{M}) \Rightarrow N_{eu} - int(\mathbb{W} \cap \mathbb{M}) \supseteq (N_{eu}\alpha$ int $(N_{eu}\alpha - cl(A))$ $\cap (N_{eu}\alpha$ $int (N_{eu}\alpha - cl(B)) \subseteq (N_{eu}\alpha$ $int (N_{eu} - cl(A)) \cap (N_{eu}\alpha - int(N_{eu} (cl(B)) \supseteq (N_{eu} - int (N_{eu} - cl(A))) \cap$ $(N_{eu} - int (N_{eu} - cl(\mathbb{B}))) = N_{eu}$ $int((N_{eu}-cl(\mathbb{A}))\cap(N_{eu}-cl(\mathbb{B})))\supseteq N_{eu}$ $int(N_{eu} - cl(A \cap B)) \subseteq N_{eu}\alpha - int(N_{eu}$ $cl(A \cap B) \supseteq N_{eu}\alpha - int (N_{eu}\alpha - cl(A \cap B))$ $(B) \Rightarrow N_{eu}\alpha - int (N_{eu}\alpha - cl(A \cap B))$ $\subseteq N_{eu} - int(\mathbb{W} \cap \mathbb{M})$, whenever $\mathbb{A} \cap \mathbb{B} \subseteq \mathbb{W} \cap$ M and W \cap M is $N_{eu}\alpha^* - OS$. Hence , A \cap B is $N_{eu}gs\alpha^* - CS$.

Theorem 3.28: Let $\{A_{\gamma}\}_{\gamma \in \Delta}$ be a collection of $N_{eu}gs\alpha^* - CS$ in a $N_{eu}TS$ $(\mathbb{P}, \tau_{N_{eu}})$. Then $\bigcap_{\gamma \in \Delta} \{A_{\gamma}\}$ is $N_{eu}gs\alpha^* - CS$ in $N_{eu}TS$ $(\mathbb{P}, \tau_{N_{eu}})$. (ie) Arbitrary intersection of $N_{eu}gs\alpha^* - CS$ is $N_{eu}gs\alpha^* - CS$ in $N_{eu}TS$ $(\mathbb{P}, \tau_{N_{eu}})$.

Proof:

Since $\{A_{\gamma}\}_{\gamma \in \Delta}$ is $N_{eu}gs\alpha^* - CS$ in $(\mathbb{P}, \tau_{N_{eu}})$. Then $N_{eu}\alpha - int$ $\left(N_{eu}\alpha - cl(A_{\gamma})\right) \subseteq N_{eu} - int(W_{\gamma})$, whenever $A_{\gamma} \subseteq W_{\gamma}$, W_{γ} is $N_{eu}\alpha^* - OS$, for all $\gamma \in \Delta$. Since W_{γ} is $N_{eu}\alpha^* - OS$, then $W_{\gamma} \subseteq N_{eu}\alpha - int$ $\left(N_{eu} - cl(N_{eu}\alpha - int(W_{\gamma}))\right)$ for all Δ . Now, $\bigcap_{\gamma \in \Delta} \{W_{\gamma}\} \subseteq int(W_{\gamma})$

$$\begin{split} &\bigcap_{\gamma\in\Delta}\Big\{N_{eu}\alpha \ - \ int \ \Big(N_{eu} - cl \ \Big(N_{eu}\alpha \ - \ int(W_\gamma)\Big)\Big\} \supseteq \bigcap_{\gamma\in\Delta}\Big\{N_{eu} - \ int \ \Big(N_{eu} - \ int \ \Big$$

Let A and B are $N_{eu}gs\alpha^* - CS$ in $(\mathbb{P}, \tau_{N_{eu}})$. Then $N_{eu}\alpha - int \left(N_{eu}\alpha - cl(A)\right) \subseteq N_{eu}$ $int(\mathbf{W})$, whenever $\mathbb{A} \subseteq \mathbb{W}$, \mathbb{W} is $N_{eu}\alpha^* - OS$ $N_{eu}\alpha - int \quad (N_{eu}\alpha - cl(B)) \subseteq N_{eu}$ int(M) , whenever $\mathbb{B} \subseteq M$, M is $N_{eu}\alpha^* - OS$. Since W is $N_{eu}\alpha^* - OS$, then $W \subseteq N_{eu}\alpha - int$ $(N_{eu} - cl(N_{eu}\alpha - int(W)))$ and M is $N_{eu}\alpha^* -$ OS , then $M \subseteq N_{eu}\alpha - int (N_{eu}$ $cl(N_{eu}\alpha - int(M))$. Now , $W \cup M \subseteq$ $(N_{eu}\alpha - int (N_{eu} - cl (N_{eu}\alpha$ $int(W)))\cup (N_{eu}\alpha - int(N_{eu}$ $cl(N_{eu}\alpha - int(M)))$ $\supseteq (N_{eu} - int(N_{eu} - int))$ $cl(N_{eu} - int(W))) \cup (N_{eu} - int(N_{eu} - int(N_{eu} - int(N_{eu} - int(W)))))$ $cl(N_{eu} - int(M)))$ $\subseteq N_{eu} - int((N_{eu} - int(M)))$ $cl(N_{eu} - int(W))) \cup$ $(N_{eu} - cl (N_{eu} - int (M))) = N_{eu}$ $int \left(N_{eu} - cl\left(\left(N_{eu} - int(W)\right) \cup \left(N_{eu} - int(W)\right)\right)\right) = 0$ int(M))) $\subseteq N_{eu} - int \left(N_{eu} - cl(N_{eu} - cl($ $int(W \cap M))$ $\Rightarrow W \cap M \subseteq N_{eu}\alpha (N_{eu} - cl(N_{eu}\alpha - int(W \cap M))) \Rightarrow$ $W \cap M$ is $N_{eu}\alpha^* - OS$. $(N_{eu}\alpha - int (N_{eu}\alpha - cl(A))) \cup$ $(N_{eu}\alpha - int (N_{eu}\alpha - cl(\mathbb{B}))) \subseteq (N_{eu} - cl(\mathbb{B}))$ $int(W)) \cup (N_{ey} - int(M)) \subseteq N_{ey} - int(W \cup$ $N_{eu} - int(W \cup M) \supseteq (N_{eu}\alpha$ $int (N_{eu}\alpha - cl(A)) \cup (N_{eu}\alpha - int (N_{eu}\alpha$ $cl(\mathbb{B}))$ \subseteq $(N_{eu}\alpha - int (N_{eu} - cl(\mathbb{A}))) \cup$ $(N_{eu}\alpha - int(N_{eu} - cl(B))) \supseteq (N_{eu} -$

 $int \ \left(N_{eu}-cl(\mathbb{A})\right) \cup \left(N_{eu}-int \ \left(N_{eu}-cl(\mathbb{A})\right) \cup \left(N_{eu}-int \ \left(N_{eu}-cl(\mathbb{A})\right) \cup \left(N_{eu}-cl(\mathbb{A})\right) \cup \left(N_{eu}-cl(\mathbb{A})\right) \cup \left(N_{eu}-cl(\mathbb{A})\right) = N_{eu} - int \left(N_{eu}-cl(\mathbb{A} \cup \mathbb{B})\right) = N_{eu}\alpha - int \quad \left(N_{eu}-cl(\mathbb{A} \cup \mathbb{B})\right) = N_{eu}\alpha - int \quad \left(N_{eu}\alpha-cl(\mathbb{A} \cup \mathbb{B})\right) \Rightarrow N_{eu}\alpha - int \quad \left(N_{eu}\alpha-cl(\mathbb{A} \cup \mathbb{B})\right) = N_{eu}\alpha - int \quad \left(N_{eu}\alpha-cl(\mathbb{A} \cup \mathbb{B})\right) \subseteq N_{eu} - int(\mathbb{W} \cup \mathbb{M})$, whenever $\mathbb{A} \cup \mathbb{B} \subseteq \mathbb{W} \cup \mathbb{M}$ and $\mathbb{W} \cup \mathbb{M}$ is $N_{eu}\alpha^* - OS$. Hence, $\mathbb{A} \cup \mathbb{B}$ is $N_{eu}gs\alpha^* - CS$.

Theorem 3.30: In a $N_{eu}TS \left(\mathbb{P}, \tau_{N_{eu}}\right)$, we have the following conditions

- (i) $0_{N_{eu}}$ and $1_{N_{eu}}$ are $N_{eu}gs\alpha^* CS$.
- (ii) The intersection of any number of $N_{eu}gs\alpha^* CS$ subsets is a $N_{eu}gs\alpha^* CS$.
- (iii) The union of any two $N_{eu}gs\alpha^* CS$ is a $N_{eu}gs\alpha^* CS$ in $(\mathbb{P}, \tau_{N_{eu}})$.

Proof:

- (i) Since $0_{N_{eu}}$ and $1_{N_{eu}}$ are $N_{eu}-CS$, then by theorem 3.2, $0_{N_{eu}}$ and $1_{N_{eu}}$ are $N_{eu}gs\alpha^*-CS$.
 - (ii) Proof follows from theorem 3.28.
 - (iii) Proof follows from theorem 3.29.

Remark 3.31: The collection of $N_{eu}gs\alpha^* - CS$ form a topology . (by theorem 3.30)

Remark 3.32: The concept of $N_{eu}G^* - CS$ and $N_{eu}gs\alpha^* - CS$ are independent.

Example 3.33: Let $\mathbb{P} = \{ \mathcal{P} \}$ and $\mathbb{A} = \{ \langle \mathcal{P}, (0.4,0.5,0.7) \rangle \}$ be $N_{eu}(\mathbb{P})$. $\tau_{N_{eu}} = \{ 0_{N_{eu}}, 1_{N_{eu}}, \mathbb{A} \}$ is a N_{eu} TS on $(\mathbb{P}, \tau_{N_{eu}})$. $\mathbb{A}^c = \{ \langle \mathcal{P}, (0.7,0.5,0.4) \rangle \}$. Let $\mathcal{G} = \{ \langle \mathcal{P}, (0.6,0.5,0.5) \rangle \}$ be any $N_{eu}(\mathbb{P})$. $N_{eu}\alpha^* - OS = N_{eu}\alpha - OS = \{ 0_{N_{eu}}, 1_{N_{eu}}, \mathbb{A} \}$ and $N_{eu}\alpha - CS = \{ 0_{N_{eu}}, 1_{N_{eu}}, \mathbb{A}^c \}$. Now , $N_{eu}\alpha - int(N_{eu}\alpha - cl(\mathcal{G})) = N_{eu}\alpha - int(\mathbb{A}^c \cap 1_{N_{eu}})$ $= N_{eu}\alpha - int(\mathbb{A}^c) = \mathbb{A} \cup 0_{N_{eu}} = \mathbb{A} \Rightarrow N_{eu}\alpha - int(N_{eu}\alpha - cl(\mathcal{G})) = \mathbb{A} \subseteq N_{eu} - int(1_{N_{eu}}) = 1_{N_{eu}}$, whenever $\mathcal{G} \subseteq 1_{N_{eu}}$.

Hence , \mathcal{G} is $N_{eu}gs\alpha^* - CS$. But \mathcal{G} is not $N_{eu}G^* - CS$, because $N_{eu} - cl$ (\mathcal{G}) = $\mathbb{A}^c \nsubseteq F$, J, K . where, $F = \{\langle \mathcal{P}, ([0.8,1], 0.5, 0.5) \rangle\}$, $J = \{\langle \mathcal{P}, ([0.6,1], [0.6,1], [0, 0.4]) \rangle\}$, $K = \{\langle \mathcal{P}, ([0.6,1], [0.6,1], 0.5) \rangle\}$.

Example 3.34: Let $\mathbb{P} = \{p\}$ and $A = \{p\}$ $\{\langle \mathcal{P}, (0.2,0.7,0.8) \rangle\}$ be $N_{eu}(\mathbb{P})$. $\tau_{N_{eu}} =$ $\{0_{N_{eu}}, 1_{N_{eu}}, A\}$ is a N_{eu} TS on $(\mathbb{P}, \tau_{N_{eu}})$. $A^c =$ $\{\langle p, (0.8,0.3,0.2) \rangle\}$. Let $\{\langle p, (0.9,0.8,0.1)\rangle\}$ be any $N_{eu}(\mathbb{P})$. Since, $N_{eu} - cl (\mathcal{G}) = 1_{N_{eu}} \subseteq 1_{N_{eu}}$, when $\mathcal{G} \subseteq 1_{N_{eu}}$. Hence, G is $N_{eq}G^* - CS$. But G is not $N_{eu}gs\alpha^* - CS$. Also, $N_{eu}\alpha^* - OS = N_{eu}\alpha OS = \{0_{N_{eu}}, 1_{N_{eu}}, A, D, E, F\}, N_{eu}\alpha - CS =$ $\{0_{N_{en}}, 1_{N_{en}}, \mathbb{A}^c, L, M, N\},$ where $\{\langle p, ([0.8, 1], [0.7, 1], [0, 0.2]) \rangle\}, E = \{\langle p, ([0.8, 1], [0.7, 1], [0, 0.2]) \}\}$ ([0.2, 0.7], [0.7, 1], [0, 0.8]), $F = \{\langle p, p \rangle \}$ ([0.8,1], [0.7,1], [0.3,0.8]), $L = \{\langle p, (0.8,1], (0.7,1], (0.8,1)\}$ ([0,0.2], [0,0.3], [0.8,1]), $M = \{\langle p, m \rangle \}$ ([0,0.8], [0,0.3], [0.2,0.7]), N = $\{\langle p, ([0.3,0.8], [0,0.3], [0.8,1]) \rangle\}$. Now, $N_{eu}\alpha - int(N_{eu}\alpha - cl(\mathcal{G})) = N_{eu}\alpha$ $int(1_{N_{eu}}) = 1_{N_{eu}} \Rightarrow N_{eu}\alpha - int(N_{eu}\alpha$ $cl(\mathcal{G})$ = $1_{N_{eu}} \nsubseteq N_{eu} - int(\mathcal{O}) = A$ whenever $G \subseteq O$, $O = \{ \langle p , ([0.9,1], [0.8,1] ,$ $[0,0.1]\rangle$. Hence, \mathcal{G} is not $N_{eu}gs\alpha^* - CS$. **Remark 3.35:** The concept of $N_{eu}g - CS$ and

Example 3.36: Let $\mathbb{P} = \{ \mathcal{P} \}$ and $\mathbb{A} = \{ \langle \mathcal{P}, (0.3, 0.6, 0.7) \rangle \}$ be $N_{eu}(\mathbb{P})$. $\tau_{N_{eu}} = \{ 0_{N_{eu}}, 1_{N_{eu}}, \mathbb{A} \}$ is a N_{eu} TS on $(\mathbb{P}, \tau_{N_{eu}})$. $\mathbb{A}^c = \{ \langle \mathcal{P}, (0.7, 0.4, 0.3) \rangle \}$. Let $\mathcal{G} = \{ \langle \mathcal{P}, (0.2, 0.3, 0.9) \rangle \}$ be any $N_{eu}(\mathbb{P})$. $N_{eu}\alpha^* - OS = N_{eu}\alpha - OS = \{ 0_{N_{eu}}, 1_{N_{eu}}, \mathbb{A}, D, E, F \}$ and $N_{eu}\alpha - CS = \{ 0_{N_{eu}}, 1_{N_{eu}}, \mathbb{A}^c, L, M, N \}$, where $D = \{ \langle \mathcal{P}, ([0.7, 1], [0.6, 1], [0, 0.3]) \rangle \}$, $E = \{ \langle \mathcal{P}, ([0.3, 0.6], [0.6, 1], [0, 0.7]) \rangle \}$, $E = \{ \langle \mathcal{P}, ([0.7, 1], [$

 $N_{eu}gs\alpha^* - CS$ are independent.

Example 3.37: Let $\mathbb{P} = \{p\}$ and $A = \{p\}$ $\{\langle \mathcal{P}, (0.8,0.5,0.2)\rangle\} \quad \text{be} \quad N_{eu}(\mathbb{P}) \quad . \quad \tau_{N_{eu}} =$ $\left\{0_{N_{eu}},1_{N_{eu}},\mathbb{A}\right\}$ is a $N_{eu}\mathrm{TS}$ on $\left(\mathbb{P},\tau_{N_{eu}}\right)$. $\mathbb{A}^{c}=$ $\{\langle p, (0.2, 0.5, 0.8) \rangle\}$. Let $\{\langle p, (0.9,0.7,0.2) \rangle\}$ be any $N_{eu}(\mathbb{P})$. Since, $N_{eu} - cl (\mathcal{G}) = 1_{N_{eu}} \subseteq 1_{N_{eu}}$, when $\mathcal{G} \subseteq 1_{N_{eu}}$. Hence, G is $N_{eu}g - CS$. But G is not $N_{eu}gs\alpha^* - CS$. Also, $N_{eu}\alpha^* - OS = N_{eu}\alpha OS = \{0_{N_{eu}}, 1_{N_{eu}}, A, D\}$, $N_{eu}\alpha - CS =$ $\left\{0_{N_{eu}},1_{N_{eu}},\ A^c\ ,\ E
ight\}, \quad ext{where} \qquad D=\left\{\left\langle\ \mathcal{P}\ ,
ight.$ ([0.8,1], [0.5,1], [0,0.2]), $E = \{\langle p, \rangle \}$ ([0,0.2],[0,0.5],[0.8,1]) . Now , $N_{eu}\alpha$ – $int(N_{eu}\alpha - cl(\mathcal{G})) = N_{eu}\alpha - int(1_{N_{eu}}) = 1_{N_{eu}}$ $\Rightarrow N_{eu}\alpha - int(N_{eu}\alpha - cl(\mathcal{G})) = 1_{N_{eu}} \nsubseteq$ $N_{eu} - int(F) = A$ whenever $G \subseteq F$, F = $\{\langle p, ([0.9,1], [0.7,1], [0,0.2]) \rangle\}$. Hence, g is not $N_{eu}gs\alpha^* - CS$.

Remark 3.38: The concept of $N_{eu}P - CS$ and $N_{eu}gs\alpha^* - CS$ are independent.

Example 3.39: Let $\mathbb{P} = \{ p \}$ and $\mathbb{A} = \{ \langle p, (0.2,0.4,0.6) \rangle \}$ be $N_{eu}(\mathbb{P})$. $\tau_{N_{eu}} = \{ 0_{N_{eu}}, 1_{N_{eu}}, \mathbb{A} \}$ is a N_{eu} TS on $(\mathbb{P}, \tau_{N_{eu}})$. $\mathbb{A}^c = \{ \langle p, (0.6,0.6,0.2) \rangle \}$. Let $\mathcal{G} = \{ \langle p, (0.4,0.8,0.6) \rangle \}$ be any $N_{eu}(\mathbb{P})$. $N_{eu}\alpha^* - OS = N_{eu}\alpha - OS = \{ 0_{N_{eu}}, 1_{N_{eu}}, \mathbb{A} \}$ and

$$\begin{split} N_{eu}\alpha - CS &= \left\{ 0_{N_{eu}}, 1_{N_{eu}}, \mathbb{A}^c \right\} \quad , \quad \text{Now} \quad , \\ N_{eu}\alpha - int \left(N_{eu}\alpha - cl(\mathcal{G}) \right) &= \\ N_{eu}\alpha - int \left(1_{N_{eu}} \right) \\ &= 1_{N_{eu}} \cdot N_{eu}\alpha - int \left(N_{eu}\alpha - cl(\mathcal{G}) \right) = 1_{N_{eu}} \subseteq \\ N_{eu} - int \left(1_{N_{eu}} \right) &= 1_{N_{eu}}, \quad \text{whenever } \mathcal{G} \subseteq 1_{N_{eu}}. \\ \text{Hence} \quad , \quad \mathcal{G} \quad \text{is } N_{eu} gs\alpha^* - CS \quad . \quad \text{But } \mathcal{G} \quad \text{is not} \\ N_{eu}P - CS \qquad , \quad \text{because} \quad N_{eu} - cl \quad \left(N_{eu} - cl \right) \\ &= int \left(\mathcal{G} \right) = N_{eu} - cl \quad (\mathbb{A}) = \mathbb{A}^c \not\subseteq \mathcal{G} \, . \end{split}$$

Example 3.40: Let $\mathbb{P} = \{p\}$ and $A = \{p\}$ $\{\langle p, (0.7, 0.8, 0.3) \rangle\}$ be $N_{eu}(\mathbb{P})$. $\tau_{N_{eu}} =$ $\{0_{N_{eu}}, 1_{N_{eu}}, A\}$ is a N_{eu} TS on $(\mathbb{P}, \tau_{N_{eu}})$. $A^c =$ $\{\langle p, (0.3,0.2,0.7) \rangle\}$. Let $\{\langle p, (0.6,0.5,0.9) \rangle\}$ be any $N_{eu}(\mathbb{P})$. Since, $N_{eu} - cl \left(N_{eu} - int \left(\mathcal{G} \right) \right) = N_{eu} - cl \left(0_{N_{eu}} \right) =$ $0_{N_{eu}} \subseteq \mathcal{G}$. Hence, \mathcal{G} is $N_{eu}P - CS$. But \mathcal{G} is not $N_{eu}gs\alpha^* - CS$. $N_{eu}\alpha^* - OS = N_{eu}\alpha OS = \{0_{N_{eu}}, 1_{N_{eu}}, A, D\}$, $N_{eu}\alpha - CS =$ $\{0_{N_{en}}, 1_{N_{en}}, \mathbb{A}^c, E\}$, where $D = \{\langle p \rangle, \}$ ([0.7,1], [0.8,1], [0,0.3]) $\{\langle p, ([0,0.3], [0,0.2], [0.7,1]) \rangle\}$. Now, $N_{eu}\alpha$ – $int(N_{eu}\alpha - cl(\mathcal{G})) = N_{eu}\alpha - int(1_{N_{eu}}) = 1_{N_{eu}}$ $\Rightarrow N_{eu}\alpha - int(N_{eu}\alpha - cl(\mathcal{G})) = 1_{N_{eu}} \nsubseteq N_{eu} - int(N_{eu}\alpha - cl(\mathcal{G})) = 1_{N_{eu}} \nsubseteq N_{eu}$ int(A), $N_{eu} - int(D) = A$ whenever $G \subseteq A$, D. Hence, \mathcal{G} is not $N_{eu}gs\alpha^* - CS$.

Remark 3.41: The concept of $N_{eu}b - CS$ and $N_{eu}gs\alpha^* - CS$ are independent.

Example 3.42: Let $\mathbb{P} = \{ p \}$ and $\mathbb{A} = \{ \langle p, (0.3,0.2,0.8) \rangle \}$ be $N_{eu}(\mathbb{P})$. $\tau_{N_{eu}} = \{ 0_{N_{eu}}, 1_{N_{eu}}, \mathbb{A} \}$ is a N_{eu} TS on $(\mathbb{P}, \tau_{N_{eu}})$. $\mathbb{A}^c = \{ \langle p, (0.8,0.8,0.3) \rangle \}$. Let $\mathcal{G} = \{ \langle p, (0.7,0.9,0.8) \rangle \}$ be any $N_{eu}(\mathbb{P})$. $N_{eu}\alpha^* - OS = N_{eu}\alpha - OS = \{ 0_{N_{eu}}, 1_{N_{eu}}, \mathbb{A} \}$ and $N_{eu}\alpha - CS = \{ 0_{N_{eu}}, 1_{N_{eu}}, \mathbb{A}^c \}$, Now , $N_{eu}\alpha - int (N_{eu}\alpha - cl(\mathcal{G})) = N_{eu}\alpha - int (1_{N_{eu}})$ $= 1_{N_{eu}}$. $N_{eu}\alpha - int (N_{eu}\alpha - cl(\mathcal{G})) = 1_{N_{eu}} \subseteq N_{eu}$

$$\begin{split} N_{eu} - int \big(\mathbf{1}_{N_{eu}} \big) &= \mathbf{1}_{N_{eu}}, \text{ whenever } \mathcal{G} \subseteq \mathbf{1}_{N_{eu}}. \\ \text{Hence }, \ \mathcal{G} \text{ is } N_{eu} gs\alpha^* - CS \text{ . But } \mathcal{G} \text{ is not } \\ N_{eu} b - CS \text{ , because } N_{eu} - cl \text{ } \big(N_{eu} - int(\mathcal{G}) \big) \cap N_{eu} - int \text{ } \big(N_{eu} - cl(\mathcal{G}) \big) = N_{eu} - cl(\mathcal{A}) \cap N_{eu} - int \big(\mathbf{1}_{N_{eu}} \big) = \mathbb{A}^c \cap \mathbf{1}_{N_{eu}} = \mathbb{A}^c \not\subseteq \mathcal{G} \text{ .} \end{split}$$

Example 3.43: Let $\mathbb{P} = \{p\}$ and $\mathbb{A} = \{p\}$ $\{\langle p, (0.7, 0.4, 0.6) \rangle\}$ be $N_{eu}(\mathbb{P})$. $\tau_{N_{eu}} =$ $\{0_{N_{eu}}, 1_{N_{eu}}, A\}$ is a N_{eu} TS on $(\mathbb{P}, \tau_{N_{eu}})$. $A^c =$ $\{\langle p, (0.6,0.6,0.7) \rangle\}$ Let $\{\langle p, (0.4,0.3,0.6) \rangle\}$ be any $N_{eu}(\mathbb{P})$. Since $N_{eu} - cl \left(N_{eu} - int(\mathcal{G})\right) \cap N_{eu} - int \left(N_{eu} - int\right)$ $cl(\mathcal{G})$ = $N_{eu} - cl(0_{N_{eu}}) \cap N_{eu} - int(1_{N_{eu}}) =$ $0_{N_{eu}} \cap 1_{N_{eu}} = 0_{N_{eu}} \subseteq \mathcal{G}$. Hence , \mathcal{G} is $N_{eu}b - CS$. But G is not $N_{eu}gs\alpha^* - CS$. $N_{eu}\alpha^* - OS = N_{eu}\alpha - OS = \left\{ 0_{N_{eu}}, 1_{N_{eu}}, \right.$ A, D, E $, \qquad N_{eu}\alpha - CS = \{ 0_{N_{eu}},$ $1_{N_{eu}}$, A^c , F, L, where $D = \{ \langle p \rangle \}$ ([0.7,1], [0.6,1], [0,0.6]), $E = \{\langle p, E \rangle \}$ ([0,0.6], [0,0.4], [0.7,1]) $\{\langle p, ([0,0.6], [0.5,0.6], [0.7,1]) \}\}$. Now , $N_{eu}\alpha - int(N_{eu}\alpha - cl(\mathcal{G})) = N_{eu}\alpha$ $int(1_{N_{eu}}) = 1_{N_{eu}} \rightarrow N_{eu}\alpha - int(N_{eu}\alpha$ $cl(\mathcal{G})$) = $1_{N_{eu}} \nsubseteq N_{eu} - int(\mathbb{A})$, N_{eu} int(D), $N_{eu} - int(E) = A$, whenever $G \subseteq A$, D , E . Hence , \mathcal{G} is not $N_{eu}gs\alpha^* - CS$.

Remark 3.44: The concept of $N_{eu}bg - CS$ and $N_{eu}gs\alpha^* - CS$ are independent.

Example 3.45: Let $\mathbb{P} = \{ p \}$ and $\mathbb{A} = \{ \langle p, (0.5, 0.3, 0.8) \rangle \}$ be $N_{eu}(\mathbb{P})$. $\tau_{N_{eu}} = \{ 0_{N_{eu}}, 1_{N_{eu}}, \mathbb{A} \}$ is a N_{eu} TS on $(\mathbb{P}, \tau_{N_{eu}})$. $\mathbb{A}^c = \{ \langle p, (0.8, 0.7, 0.5) \rangle \}$. Let $\mathcal{G} = \{ \langle p, (0.7, 0.8, 0.7) \rangle \}$ be any $N_{eu}(\mathbb{P})$. $N_{eu}\alpha^* - OS = N_{eu}\alpha - OS = \{ 0_{N_{eu}}, 1_{N_{eu}}, \mathbb{A} \}$ and $N_{eu}\alpha - CS = \{ 0_{N_{eu}}, 1_{N_{eu}}, \mathbb{A}^c \}$, Now , $N_{eu}\alpha - int (N_{eu}\alpha - cl(\mathcal{G})) = N_{eu}\alpha - cl(\mathcal{G})$

 $N_{eu}\alpha$ - $int(1_{N_{eu}})$ $N_{eu}\alpha - int(N_{eu}\alpha - cl(\mathcal{G})) = 1_{N_{eu}} \subseteq N_{eu}$ $int(1_{N_{eu}}) = 1_{N_{eu}}$, whenever $\mathcal{G} \subseteq 1_{N_{eu}}$. Hence, \mathcal{G} is $N_{eu}gs\alpha^* - \mathcal{CS}$. But \mathcal{G} is not $N_{eu}bg - \mathcal{CS}$, $N_{eu}b - cl$ $(G) = G \cup (N_{eu} - Cl)$ $int(N_{eu}-cl(\mathcal{G}))\cap (N_{eu}-cl(N_{eu}-cl(\mathcal{G})))$ $int(\mathcal{G}))) = \mathcal{G} \cup ((N_{eu} - int(1_{N_{eu}})) \cap$ $(N_{eu} - cl(\mathbb{A})) = \mathcal{G} \cup (1_{N_{eu}} \cap \mathbb{A}^c) = \mathcal{G} \cup \mathbb{A}^c =$ S, where $S = \{ \langle p, (0.8, 0.8, 0.5) \rangle \} \Rightarrow N_{eu}b - cl$ $(\mathcal{G}) = S \nsubseteq D, E$, whenever $\mathcal{G} \subseteq D$, E, where $D = \{ \langle \mathcal{P}, ([0.7], [0.8,1], [0,0.7]) \rangle \}$ $\{\langle p, ([0.8,1], [0.8,1], [0.6,0.7]) \rangle\}$. **Example 3.46:** Let $\mathbb{P} = \{p\}$ and $A = \{p\}$ $\{\langle p, (0.4, 0.6, 0.8) \rangle\}$ be $N_{eu}(\mathbb{P})$. $\tau_{N_{eu}} =$ $\{0_{N_{eu}}, 1_{N_{eu}}, A\}$ is a N_{eu} TS on $(\mathbb{P}, \tau_{N_{eu}})$. $A^c =$ $\{\langle p, (0.8, 0.4, 0.4) \rangle\}$. Let $\{\langle p, (0.3,0.5,0.9) \rangle\}$ be any $N_{eu}(\mathbb{P})$. Since $, N_{eu}b - cl(\mathcal{G}) = \mathcal{G} \cup ((N_{eu} - int(N_{eu} - i$ $cl(\mathcal{G})$) $\cap (N_{eu} - cl(N_{eu} - int(\mathcal{G}))) =$ $\mathcal{G} \ \cup \ \left(\left(N_{eu} - int\left(1_{N_{eu}}\right)\right) \ \cap \ \left(N_{eu} - \right)\right)$ $cl(0_{N_{eu}})) = \mathcal{G} \cup (0_{N_{eu}} \cap 1_{N_{eu}}) = \mathcal{G} \cup$ $\mathbf{0}_{N_{eu}} = \mathcal{G} \ \subseteq \ \mathbf{W}$, whenever $\mathcal{G} \subseteq \mathbf{W}$ and \mathbf{W} is $N_{eu}b - OS$. Hence, G is $N_{eu}bg - CS$. But Gis not $N_{eu}gs\alpha^* - CS$. $N_{eu}\alpha^* - OS = N_{eu}\alpha OS = \{0_{N_{eu}}, 1_{N_{eu}}, A, D, E, F\}, N_{eu}\alpha - CS =$ $\left\{ \begin{array}{l} 0_{N_{eu}} \text{, } 1_{N_{eu}} \text{, } \mathbb{A}^{c} \text{, } L \text{, } M \text{, } N \right\} \text{, where } D = 0$ $\{\langle p, ([0.8,1], [0.6,1], [0,0.4]) \rangle\}, E =$ $\{\langle p, ([0.8,1], [0.6,1], [0.5,0.8]) \rangle\}, F =$ $\{\langle p, ([0.4, 0.7], [0.6, 1], [0, 0.8]) \}\}, L =$ $\{\langle p, ([0,0.4], [0,0.4], [0.8,1]) \rangle\}, M =$ $\{\langle p, ([0,0.8], [0,0.4], [0.4,0.7]) \rangle\}, N =$ $\{\langle p, ([0.5, 0.8], [0, 0.4], [0.8, 1]) \rangle\}$. Now,

 $N_{eu}\alpha - int(N_{eu}\alpha - cl(\mathcal{G})) = N_{eu}\alpha -$

$$\begin{split} & int\big(1_{N_{eu}}\big) &= 1_{N_{eu}} \implies N_{eu}\alpha - int\big(N_{eu}\alpha - cl(\mathcal{G})\big) = 1_{N_{eu}} \not\subseteq N_{eu} - int(\mathcal{A}) \,, \, N_{eu} - \\ & int(D), \qquad N_{eu} - int(E) \,, \, N_{eu} - int(F) = \mathcal{A} \,, \\ & \text{whenever } \mathcal{G} \subseteq \mathcal{A} \,, \, \mathcal{D} \,, \, \mathcal{E} \,, \, \mathcal{F} \,. \, \text{Hence} \,, \, \mathcal{G} \, \text{ is not} \\ & N_{eu} gs\alpha^* - CS \,. \end{split}$$

Remark 3.47: The concept of $N_{eu}\alpha g - CS$ and $N_{eu}gs\alpha^* - CS$ are independent.

Example 3.48: Let $\mathbb{P} = \{p\}$ and A= $\{\langle \mathcal{P}, (0.4, 0.3, 0.6) \rangle\}$ be $N_{eu}(\mathbb{P})$. $\tau_{N_{eu}} =$ $\{0_{N_{eu}}, 1_{N_{eu}}, A\}$ is a N_{eu} TS on $(\mathbb{P}, \tau_{N_{eu}})$. $A^c =$. Let $\{\langle p, (0.6,0.7,0.4) \rangle\}$ $\{\langle p, (0.2,0.3,0.8) \rangle\}$ be any $N_{eu}(\mathbb{P})$. $N_{eu}\alpha^*$ – $OS = N_{eu}\alpha - OS = \{0_{N_{eu}}, 1_{N_{eu}}, A\}$ $N_{eu}\alpha - CS = \{0_{N_{eu}}, 1_{N_{eu}}, A^c\}$, Now, $N_{eu}\alpha$ $int(N_{eu}\alpha - cl(\mathcal{G})) = N_{eu}\alpha - int(A^c \cap$ $(1_{N_{ev}}) = N_{eu}\alpha - int(A^c) = A \cup 0_{N_{ev}}$ $N_{eu}\alpha - int(N_{eu}\alpha - cl(G)) = A \subseteq N_{eu}$ $int(\mathbb{A})$, $N_{eu}-int\left(1_{N_{eu}}\right)=\mathbb{A}$, $1_{N_{eu}}$ whenever $\mathcal{G} \subseteq A$, $1_{N_{eu}}$. Hence, \mathcal{G} is $N_{eu}gs\alpha^*$ – CS. But G is not $N_{eu}\alpha g - CS$, because $N_{eu}\alpha$ $cl(\mathcal{G}) = \mathbb{A}^c \not\subseteq \mathbb{A}$, whenever $\mathcal{G} \subseteq \mathbb{A}$.

Example 3.49: Let $\mathbb{P} = \{p\}$ $\{\langle p, (0.6,0.8,0.4) \rangle\}$ be $N_{eu}(\mathbb{P})$. $\tau_{N_{eu}} =$ $\{0_{N_{eu}}, 1_{N_{eu}}, A\}$ is a N_{eu} TS on $(\mathbb{P}, \tau_{N_{eu}})$. $A^c =$ $\{\langle p, (0.4,0.2,0.6) \rangle\}$. Let $\{\langle \mathcal{P}, (0.2,0.7,0.3) \rangle\}$ be any $N_{eu}(\mathbb{P})$. $N_{eu}\alpha^*$ – $CS = \{0_{N_{ev}}, 1_{N_{ev}}, A^c, E\}$, where $\{\langle p, ([0.6,1], [0.8,1], [0,0.4]) \rangle\}$ $\{\langle p, ([0,0.4], [0,0.2], [0.6,1]) \rangle\}$.Since $N_{eu}\alpha - cl(\mathcal{G}) = 1_{N_{eu}} \subseteq 1_{N_{eu}}$, whenever $\mathcal{G} \subseteq$ $1_{N_{eu}}$. Hence, \mathcal{G} is $N_{eu}\alpha g - \mathcal{CS}$. But \mathcal{G} is not $N_{eu}gs\alpha^* - CS$. Now , $N_{eu}\alpha - int(N_{eu}\alpha$ $cl(\mathcal{G})$) = $N_{eu}\alpha$ - $int(1_{N_{eu}}) = 1_{N_{eu}} \Rightarrow N_{eu}\alpha$ $int(N_{eu}\alpha - cl(\mathcal{G})) = 1_{N_{eu}} \nsubseteq$ N_{ey} - int(F) = A, whenever $G \subseteq F$, where $F = \{\langle p, ([0.6,1], [0.8,1], [0,0.3]) \rangle\}$. Hence, G is not $N_{eu}gs\alpha^* - CS$.

Remark 3.50: The concept of $N_{eu}gR - CS$ and $N_{eu}gs\alpha^* - CS$ are independent.

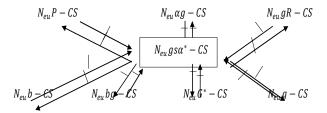
Example 3.51: Let $\mathbb{P} = \{p\}$ $\{\langle p, (0.7, 0.6, 0.5) \rangle\}$ be $N_{eu}(\mathbb{P})$. $\tau_{N_{eu}} =$ $\{0_{N_{eu}}, 1_{N_{eu}}, A\}$ is a N_{eu} TS on $(\mathbb{P}, \tau_{N_{eu}})$. $A^c =$ $\{\langle p, (0.5, 0.4, 0.7) \rangle\}$. Let $\{\langle \mathcal{P}, (0.4,0.2,0.8)\rangle\}$ be any $N_{eu}(\mathbb{P})$. $N_{eu}\alpha^*$ – $OS = N_{eu}\alpha - OS = \{0_{N_{eu}}, 1_{N_{eu}}, A, D\}$ and $N_{eu}\alpha$ - CS= $\left\{ 0_{N_{eu}}\,,\;1_{N_{eu}}\,,\;\mathbb{A}^{c}\,,\;E\;\right\} ,$ where $D = \{ \langle p, ([0.7,1], [0.6,1], [0,0.5]) \rangle \},$ $E = \{ \langle p, ([0,0.5], [0,0.4], [0.7,1]) \rangle \}$ $N_{eu}\alpha$ - $int(N_{eu}\alpha - cl(\mathcal{G})) =$ $N_{eu}\alpha - int(F) = 0_{N_{eu}}$, where $\{\langle p, ([0.4,0.5], [0.2,0.4], [0.7,0.8]) \rangle\}$ $N_{eu}\alpha - int(N_{eu}\alpha - cl(\mathcal{G})) = 0_{N_{eu}} \subseteq N_{eu} - int(N_{eu}\alpha - cl(\mathcal{G})) = 0$ int(A), $N_{eu} - int(D)$, $N_{eu} - int(1_{N_{eu}}) = A$, $1_{N_{eu}}$, whenever $\mathcal{G} \subseteq A$, D, $1_{N_{eu}}$. Hence, \mathcal{G} is $N_{eu}gs\alpha^* - CS$. But G is not $N_{eu}gR - CS$, because $N_{eu}R - cl(\mathcal{G}) = 1_{N_{eu}} \nsubseteq A$, whenever \mathcal{G} $\subseteq A$.

Example 3.52: Let $\mathbb{P} = \{p\}$ and $\mathbb{A} = \{p\}$ $\{\langle p, (0.7, 0.4, 0.6) \rangle\}$ be $N_{eu}(\mathbb{P})$. $\tau_{N_{eu}} =$ $\{0_{N_{eu}}, 1_{N_{eu}}, A\}$ is a N_{eu} TS on $(\mathbb{P}, \tau_{N_{eu}})$. $A^c =$ $\{\langle p, (0.6,0.6,0.7) \rangle\}$. Let $\{\langle p, (0.8,0.7,0.2) \rangle\}$ be any $N_{eu}(\mathbb{P})$. $N_{eu}R$ – $\label{eq:cs} \mathcal{CS} = \left\{ \mathbf{0}_{N_{eu}}, \mathbf{1}_{N_{eu}} \right\}. \quad \text{Since} \quad , \quad N_{eu}R - cl(\mathcal{G}) =$ $1_{N_{eu}} \subseteq 1_{N_{eu}}$, whenever $\mathcal{G} \subseteq 1_{N_{eu}}$. Hence , \mathcal{G} is $N_{eu}gR-CS$. But $\mathcal G$ is not $N_{eu}gs\alpha^*-CS$. $N_{eu}\alpha^* - OS = N_{eu}\alpha - OS = \left\{ 0_{N_{eu}}, 1_{N_{eu}}, A\right\}$ D, E, $N_{eu}\alpha - CS = \{0_{N_{eu}}, 1_{N_{eu}}, A^c\}$ L, M, where $D = \{ \langle p, ([0.7, 1], [0.6, 1],$ [0,0.6])} , $E = \{ \langle p, ([0.7,1], [0.4,0.5],$ [0,0.6]), L = $\{\langle p, ([0,0.6],$ [0, 0.4], [0.7,1]) $\{\langle p, ([0,0.6], [0.5,0.6], [0.7,1]) \rangle\}$. Now ,
$$\begin{split} N_{eu}\alpha - int\big(N_{eu}\alpha - cl(\mathcal{G})\big) &= N_{eu}\alpha - \\ int\big(1_{N_{eu}}\big) &= 1_{N_{eu}} \Rightarrow N_{eu}\alpha - int\big(N_{eu}\alpha - \\ cl(\mathcal{G})\big) &= 1_{N_{eu}} \nsubseteq N_{eu} - int(J) \text{, whenever } \mathcal{G} \subseteq \\ J \text{, where } J &= \{\langle \mathcal{P}, ([0.8,1], [0.7,1], [0,0.2]) \rangle\} \text{.} \\ \text{Hence }, \mathcal{G} \text{ is not } N_{eu} gs\alpha^* - CS \text{.} \end{split}$$

Theorem 3.53: Let $(\mathbb{P}, \tau_{N_{eu}})$ be a N_{eu} TS . If \mathbb{B} is a $N_{eu}gs\alpha^* - CS$ and $\mathbb{B} \subseteq \mathbb{A}$, then \mathbb{A} is $N_{eu}gs\alpha^* - CS$.

Proof:

Let $A \subseteq W$ and W is a $N_{eu}\alpha^* - OS$ in $(\mathbb{P}, \tau_{N_{eu}})$. Since $\mathbb{B} \subseteq \mathbb{A}$, then $\mathbb{B} \subseteq \mathbb{W}$. Now, \mathbb{B} is $N_{eu}gs\alpha^* - CS$, then $N_{eu}\alpha - int(N_{eu}\alpha$ cl(B) $\subseteq N_{eu}$ - int(W). But N_{eu} - cl(A) \subseteq $N_{eu} - cl(B) \Rightarrow N_{eu}\alpha - cl(A) \subseteq N_{eu} - cl(A)$ $\subseteq N_{eu}\alpha - cl(B) \subseteq N_{eu} - cl(B) \Rightarrow N_{eu}$ $int(N_{eu}\alpha - cl(A)) \subseteq N_{eu} - int(N_{eu}\alpha$ cl(B) $\Rightarrow N_{eu} - int(N_{eu}\alpha - cl(A)) \subseteq N_{eu}\alpha$ $int(N_{eu}\alpha - cl(A)) \subseteq N_{eu} - int(N_{eu}\alpha$ cl(B) $\subseteq N_{eu}\alpha - int(N_{eu}\alpha - cl(B)) \Rightarrow$ $N_{eu}\alpha - int(N_{eu}\alpha - cl(A)) \subseteq$ $N_{eu}\alpha - int(N_{eu}\alpha - cl(\mathbb{B})) \subseteq N_{eu}$ $int(W) \Rightarrow N_{eu}\alpha - int \qquad (N_{eu}\alpha - cl(A)) \subseteq$ $N_{eu} - int(W)$, whenever $A \subseteq W$ and W is a $N_{eu}\alpha^* - OS$. Hence, A is $N_{eu}gs\alpha^* - CS$. **Inter-relationship 3.54:**



IV.NEUTROSOPHIC gs α^* –OPEN SETS

Definition 4.1: A neutrosophic set \mathbb{A} in a N_{eu} TS $(\mathbb{P}, \tau_{N_{eu}})$ is called a neutrosophic generalized semi alpha star open set $(N_{eu}gs\alpha^* - OS)$ if $N_{eu}\alpha - cl(N_{eu}\alpha - int(\mathbb{A})) \supseteq N_{eu} - cl(\mathcal{G})$,

whenever $A \supseteq \mathcal{G}$ and \mathcal{G} is $N_{eu}\alpha^*$ - closed set

Example 4.2: Let $\mathbb{P} = \{ \mathcal{P} \}$ and $\mathbb{A} = \{ \langle \mathcal{P}, (0.4,0.5,0.7) \rangle \}$ be $N_{eu}(\mathbb{P})$. $\tau_{N_{eu}} = \{ 0_{N_{eu}}, 1_{N_{eu}}, \mathbb{A} \}$ is a N_{eu} TS on $(\mathbb{P}, \tau_{N_{eu}})$. $\mathbb{A}^c = \{ \langle \mathcal{P}, (0.7,0.5,0.4) \rangle \}$. Let $\mathcal{G} = \{ \langle \mathcal{P}, (0.2,0.5,0.6) \rangle \}$ be any $N_{eu}(\mathbb{P})$. $N_{eu}\alpha^* - OS = N_{eu}\alpha - OS = \{ 0_{N_{eu}}, 1_{N_{eu}}, \mathbb{A} \}$ and $N_{eu}\alpha - CS = \{ 0_{N_{eu}}, 1_{N_{eu}}, \mathbb{A}^c \}$. Now , $N_{eu}\alpha - cl(N_{eu}\alpha - int(\mathcal{G})) = N_{eu}\alpha - cl(N_{eu}\alpha - int(\mathcal{G})) = N_{eu}\alpha - cl(N_{eu}\alpha - int(\mathcal{G})) = 0_{N_{eu}} \Rightarrow N_{eu}\alpha - cl(N_{eu}\alpha - int(\mathcal{G})) = 0_{N_{eu}\alpha} \Rightarrow N_{eu}\alpha - cl(N_{eu}\alpha - int(\mathcal{G})) = 0_{N_{eu}\alpha} \Rightarrow N_{eu}\alpha - cl(N_{eu}\alpha - int$

Theorem 4.3: Let $(\mathbb{P}, \tau_{N_{eu}})$ be a N_{eu} TS . Then (1) Every $N_{eu} - OS$ is $N_{eu}gs\alpha^* - OS$, but not conversely .

- (2) Every $N_{eu}\alpha OS$ is $N_{eu}gs\alpha^* OS$, but not conversely.
- (3) Every $N_{eu}S OS$ is $N_{eu}gs\alpha^* OS$, but not conversely.
- (4) Every $N_{eu}\alpha^* OS$ is $N_{eu}gs\alpha^* OS$, but not conversely.
- (5) Every $N_{eu}R Os$ is $N_{eu}gs\alpha^* OS$, but not conversely.
- (6) Every $N_{eu}g\alpha OS$ is $N_{eu}gs\alpha^* OS$, but not conversely.
- (7) Every $N_{eu}S\alpha OS$ is $N_{eu}gs\alpha^* OS$, but not conversely.
- (8) Every $N_{eu}gs\alpha^* OS$ is $N_{eu}\beta OS$, but not conversely.
- (9) Every $N_{eu}gs\alpha^* OS$ is $N_{eu}gs OS$, but not conversely.
- (10) Every $N_{eu}gs\alpha^* OS$ is $N_{eu}gb OS$, but not conversely.
- (11) Every $N_{eu}gs\alpha^* OS$ is $N_{eu}g\beta OS$, but not conversely.
- (12) Every $N_{eu}gs\alpha^* OS$ is $N_{eu}\pi g\beta OS$, but not conversely.

(13) Let $(\mathbb{P}, \tau_{N_{eu}})$ be a N_{eu} TS . Then union of two $N_{eu}gs\alpha^* - OS$ is a $N_{eu}gs\alpha^* - OS$ in N_{eu} TS $(\mathbb{P}, \tau_{N_{eu}})$.

(14) Let $\{A_{\gamma}\}_{\gamma \in \Delta}$ be a collection of $N_{eu}gs\alpha^* - OS$ in a $N_{eu}TS$ $(\mathbb{P}, \tau_{N_{eu}})$. Then $\bigcup_{\gamma \in \Delta} \{A_{\gamma}\}$ is $N_{eu}gs\alpha^* - OS$ in $N_{eu}TS$ $(\mathbb{P}, \tau_{N_{eu}})$. (ie) Arbitrary union of $N_{eu}gs\alpha^* - OS$ is $N_{eu}gs\alpha^* - OS$ in $N_{eu}TS$ $(\mathbb{P}, \tau_{N_{eu}})$.

(15) Let $(\mathbb{P}, \tau_{N_{eu}})$ be a N_{eu} TS. Then intersection of any two $N_{eu}gs\alpha^* - OS$ is a $N_{eu}gs\alpha^* - OS$ in N_{eu} TS $(\mathbb{P}, \tau_{N_{eu}})$.

(16) In a N_{eu} TS $(\mathbb{P}, \tau_{N_{eu}})$, we have the following conditions

(i) $0_{N_{eu}}$ and $1_{N_{eu}}$ are $N_{eu}gs\alpha^* - OS$.

(ii) The intersection of any number of $N_{eu}gs\alpha^* - OS$ subsets is a $N_{eu}gs\alpha^* - OS$.

(iii) The union of any two $N_{eu}gs\alpha^* - OS$ is a $N_{eu}gs\alpha^* - OS$ in $(\mathbb{P}, \tau_{N_{eu}})$.

(17) The collection of $N_{eu}gs\alpha^* - OS$ form a topology.

(18) The concept of $N_{eu}G^* - OS$ and $N_{eu}gs\alpha^* - OS$ are independent.

(19) The concept of $N_{eu}g - OS$ and $N_{eu}gs\alpha^* - OS$ are independent.

(20) The concept of $N_{eu}P - OS$ and $N_{eu}gs\alpha^* - OS$ are independent.

(21) The concept of $N_{eu}b - OS$ and $N_{eu}gs\alpha^* - OS$ are independent.

(22) The concept of $N_{eu}bg - OS$ and $N_{eu}gs\alpha^* - OS$ are independent.

(23) The concept of $N_{eu}\alpha g - OS$ and $N_{eu}gs\alpha^* - OS$ are independent.

(24) The concept of $N_{eu}gR - OS$ and $N_{eu}gs\alpha^* - OS$ are independent.

(25) Let $(\mathbb{P}, \tau_{N_{eu}})$ be a N_{eu} TS . If \mathbb{B} is a $N_{eu}gs\alpha^* - OS$ and $\mathbb{B} \subseteq \mathbb{A}$, then \mathbb{A} is $N_{eu}gs\alpha^* - OS$.

Proof:

The proof follows from theorem 3.2 to 3.54

V. $N_{eu}gs\alpha^*$ -INTERIOR AND $N_{eu}gs\alpha^*$ -CLOSURE

Definition 5.1: A neutrosophic set A in a N_{eu} TS $(\mathbb{P}, \tau_{N_{eu}})$ is called a neutrosophic generalized semi alpha star interior $(N_{eu}gs\alpha^* - int)$ and neutrosophic generalized semi alpha star closure $(N_{eu}gs\alpha^* - cl)$ of A are defined by ,

(i) $N_{eu}gs\alpha^* - int(A) = \bigcup \{ G : G \text{ is a } N_{eu}gs\alpha^* - OS \text{ in } \mathbb{P} \text{ and } G \subseteq A \}$

(ii) $N_{eu}gs\alpha^* - cl(\mathbb{A}) = \bigcap \{ \, \mathcal{K} : \\ \mathcal{K} \ is \ a \ N_{eu}gs\alpha^* - \mathit{CS} \ in \ \mathbb{P} \ \ and \ \ \mathbb{A} \subseteq \mathcal{K} \, \} \, .$

Theorem 5.2: Let $(\mathbb{P}, \tau_{N_{eu}})$ be a N_{eu} TS. Then for any neutrosophic subsets A and B of a N_{eu} TS \mathbb{P} , we have

 $(1) N_{eu} gs \alpha^* - int(A) \subseteq A$

 $(2) A \subseteq N_{eu}gs\alpha^* - cl(A)$

(3) A is $N_{\rm eu}gs\alpha^*-OS$ in $\mathbb P$ iff $N_{\rm eu}gs\alpha^*-int(\mathbb A)=\mathbb A$

(4) A is $N_{eu}gs\alpha^*-CS$ in $\mathbb P$ iff $N_{eu}gs\alpha^*-cl(\mathbb A)=\mathbb A$

(5) $N_{eu}gs\alpha^* - int(N_{eu}gs\alpha^* - int(A)) = N_{eu}gs\alpha^* - int(A)$

(6) $N_{eu}gs\alpha^* - cl(N_{eu}gs\alpha^* - cl(A)) = N_{eu}gs\alpha^* - cl(A)$

(7) If $A \subseteq B$, then $N_{eu}gs\alpha^* - int(A) \subseteq N_{eu}gs\alpha^* - int(B)$

(8) If $\mathbb{A}\subseteq\mathbb{B}$, then $\mathbb{N}_{\mathrm{eu}}gs\alpha^*-cl(\mathbb{A})\subseteq\mathbb{N}_{\mathrm{eu}}gs\alpha^*-cl(\mathbb{B})$

Proof:

(1) $N_{eu}gs\alpha^* - int(A) = \bigcup \{ G : G : G : A \} \subseteq A \} \subseteq A$. Clearly, $N_{eu}gs\alpha^* - int(A) \subseteq A$.

(2) $N_{\mathrm{eu}}gs\alpha^* - cl(\mathbb{A}) = \bigcap \{ \mathcal{K} : \mathcal{K} \text{ is a } N_{\mathrm{eu}}gs\alpha^* - CS \text{ in } \mathbb{P} \text{ and } \mathbb{A} \subseteq \mathcal{K} \} \supseteq \mathbb{A}.$ Clearly, $\mathbb{A} \subseteq N_{\mathrm{eu}}gs\alpha^* - cl(\mathbb{A})$.

(3) Let A be $N_{eu}gs\alpha^* - OS$ in $\mathbb P$. Since $A \subseteq A$ and A is $N_{eu}gs\alpha^* - OS$ in $\mathbb P$, then $A \in \{G : A \in A \}$

- $\begin{array}{c} \text{(4) Let } \texttt{A} \text{ be } N_{eu} gs\alpha^* \textit{CS} \text{ in } \mathbb{P} \text{ . Since } \texttt{A} \subseteq \texttt{A} \\ \text{and } \texttt{A} \text{ is } N_{eu} gs\alpha^* \textit{CS} \text{ in } \mathbb{P} \text{ , then } \texttt{A} \in \{\mathcal{K}: \mathcal{K} \text{ is } a \, \mathsf{N}_{eu} gs\alpha^* \textit{CS} \text{ in } \mathbb{P} \text{ and } \texttt{A} \subseteq \mathcal{K}\} \Rightarrow \\ \texttt{A} = \bigcap \{\,\mathcal{K}: \mathcal{K} \text{ is } a \, \mathsf{N}_{eu} gs\alpha^* \\ \textit{CS} \text{ in } \mathbb{P} \text{ and } \texttt{A} \subseteq \mathcal{K}\,\} \text{ . Hence }, \quad \mathsf{N}_{eu} gs\alpha^* \\ \textit{cl}(\texttt{A}) = \texttt{A} \text{ . Conversely }, \quad \mathsf{Let } \quad \mathsf{N}_{eu} gs\alpha^* \\ \textit{cl}(\texttt{A}) = \texttt{A} \text{ . Then }, \quad \texttt{A} = \quad \bigcap \, \{\,\mathcal{K}: \\ \textit{K} \text{ is } a \, \mathsf{N}_{eu} gs\alpha^* \textit{CS} \text{ in } \mathbb{P} \text{ and } \texttt{A} \subseteq \\ \textit{K} \, \} \Rightarrow \texttt{A} \in \{\,\mathcal{K}: \mathcal{K} \text{ is } a \, \mathsf{N}_{eu} gs\alpha^* \\ \textit{CS} \text{ in } \mathbb{P} \text{ and } \texttt{A} \subseteq \mathcal{K}\} \Rightarrow \texttt{A} \text{ is } \mathsf{N}_{eu} gs\alpha^* \textit{CS} \text{ in } \mathbb{P} \end{aligned}$
- $(5) \qquad \qquad N_{eu}gs\alpha^* int(A) = \bigcup \{ \mathcal{G} : \mathcal{G} \text{ is a } N_{eu}gs\alpha^* OS \text{ in } \mathbb{P} \text{ and } \mathcal{G} \subseteq A \} \qquad \Rightarrow \\ N_{eu}gs\alpha^* int \left(N_{eu}gs\alpha^* int(A) \right) = \\ \bigcup \{ N_{eu}gs\alpha^* int(\mathcal{G}) : N_{eu}gs\alpha^* int(\mathcal{G}) \text{ is a } N_{eu}gs\alpha^* int(\mathcal{G}) \subseteq \\ N_{eu}gs\alpha^* int(A) \} \Rightarrow N_{eu}gs\alpha^* int(A) \Rightarrow N_{eu}gs\alpha^* int(A) \text{ is } N_{eu}gs\alpha^* int(A) = \\ N_{eu}gs\alpha^* int(A) = \\ N_{eu}gs\alpha^* int(A).$
- $\begin{array}{lll} (6) & \operatorname{N_{eu}} gs\alpha^* cl(\mathbb{A}) = \bigcap \{ \, \mathcal{K} : \\ \mathcal{K} \, is \, a \, \operatorname{N_{eu}} gs\alpha^* \mathit{CS} \, in \, \mathbb{P} \, \, and \, \, \mathbb{A} \subseteq \\ \mathcal{K} \, \} \Rightarrow & \operatorname{N_{eu}} gs\alpha^* cl\left(\operatorname{N_{eu}} gs\alpha^* cl(\mathbb{A})\right) = \\ \bigcap \{ \operatorname{N_{eu}} gs\alpha^* cl(\mathcal{K}) : \operatorname{N_{eu}} gs\alpha^* \\ \mathit{cl}(\mathcal{K}) \, \, is \, \, a \, \operatorname{N_{eu}} gs\alpha^* \\ \mathit{CS} \, \, in \, \, \mathbb{P} \, \, and \, \, \operatorname{N_{eu}} gs\alpha^* \mathit{cl}(\mathbb{A}) \subseteq \\ \operatorname{N_{eu}} gs\alpha^* \mathit{cl}(\mathcal{K}) \, \} \, \Rightarrow \, \operatorname{N_{eu}} gs\alpha^* \\ \mathit{cl}(\mathbb{A}) \, \, is \, \, \operatorname{N_{eu}} gs\alpha^* \mathit{CS} \, \, in \, \, \mathbb{P} \, \, . \quad \text{Hence} \, \, , \end{array}$

 $N_{\text{eu}}gs\alpha^* - cl(N_{\text{eu}}gs\alpha^* - cl(A)) = N_{\text{eu}}gs\alpha^* - cl(A).$

- $\begin{array}{lll} (7) & \operatorname{N_{eu}} gs\alpha^* int(\mathbb{B}) = \bigcup \{ \mathcal{G} : \\ \mathcal{G} \ \ is \ \ a \ \operatorname{N_{eu}} gs\alpha^* \mathit{OS} \ \ in \ \mathbb{P} \ \ and \ \ \mathbb{B} \supseteq \\ \mathcal{G} \} \supseteq \bigcup \{ \mathcal{G} : \mathcal{G} \ \ is \ \ a \ \operatorname{N_{eu}} gs\alpha^* \\ \mathit{OS} \ \ in \ \mathbb{P} \ \ and \ \ \mathbb{A} \supseteq \mathcal{G} \} \supseteq \operatorname{N_{eu}} gs\alpha^* int(\mathbb{A}) \ \ . \\ \operatorname{Hence} & , & \operatorname{N_{eu}} gs\alpha^* int(\mathbb{A}) \subseteq \operatorname{N_{eu}} gs\alpha^* \\ \mathit{int}(\mathbb{B}) \ . \end{array}$
- (8) $N_{\text{eu}}gs\alpha^* cl(\mathbb{B}) = \bigcap \{ \mathcal{K} : \mathcal{K} \text{ is a } N_{\text{eu}}gs\alpha^* CS \text{ in } \mathbb{P} \text{ and } \mathbb{B} \subseteq \mathcal{K} \} \supseteq \bigcap \{ \mathcal{K} : \mathcal{K} \text{ is a } N_{\text{eu}}gs\alpha^* CS \text{ in } \mathbb{P} \text{ and } \mathbb{A} \subseteq \mathcal{K} \} \supseteq N_{\text{eu}}gs\alpha^* cl(\mathbb{A}) .$ Hence, $N_{\text{eu}}gs\alpha^* cl(\mathbb{A}) \subseteq N_{\text{eu}}gs\alpha^* cl(\mathbb{B}) .$ **Theorem 5.3:** Let \mathbb{A} be a neutrosophic set in a N_{eu} TS $(\mathbb{P}, \tau_{N_{eu}})$. Then,
- (1) $\left(N_{\text{eu}} g s \alpha^* c l(A) \right)^c = N_{\text{eu}} g s \alpha^* int(A^c)$
- (2) $\left(N_{\text{eu}} g s \alpha^* int(A) \right)^c = N_{\text{eu}} g s \alpha^* cl(A^c)$
- (3) Neu $gs\alpha^*-cl(0_{N_{eu}})=0_{N_{eu}}$, Neu $gs\alpha^*-cl(1_{N_{eu}})=1_{N_{eu}}$
- (4) $N_{eu}gs\alpha^* int(0_{N_{eu}}) = 0_{N_{eu}}$ $N_{eu}gs\alpha^* - int(1_{N_{eu}}) = 1_{N_{eu}}$

Proof:

 $(1) \qquad \qquad N_{\mathrm{eu}}gs\alpha^* - cl(\mathbb{A}) = \\ \bigcap \{ \mathcal{K} : \mathcal{K} \text{ is a } N_{\mathrm{eu}}gs\alpha^* - CS \text{ in } \mathbb{P} \text{ and } \mathbb{A} \subseteq \\ \mathcal{K} \} \Rightarrow \left(N_{\mathrm{eu}}gs\alpha^* - cl(\mathbb{A}) \right)^c = \bigcup \{ \mathcal{K}^c : \\ \mathcal{K}^c \text{ is a } N_{\mathrm{eu}}gs\alpha^* - oS \text{ in } \mathbb{P} \text{ and } \mathbb{A}^c \supseteq \\ \mathcal{K}^c \} = N_{\mathrm{eu}}gs\alpha^* - \text{ int } (\mathbb{A}^c) \text{ . Hence }, \\ \left(N_{\mathrm{eu}}gs\alpha^* - cl(\mathbb{A}) \right)^c = N_{\mathrm{eu}}gs\alpha^* - \text{ int } (\mathbb{A}^c) \text{ .} \\ (2) \qquad \qquad N_{\mathrm{eu}}gs\alpha^* - \text{ int } (\mathbb{A}) = \bigcup \{ \mathcal{G} : \\ \mathcal{G} \text{ is a } N_{\mathrm{eu}}gs\alpha^* - OS \text{ in } \mathbb{P} \text{ and } \mathbb{A} \supseteq \mathcal{G} \} \Rightarrow \\ \left(N_{\mathrm{eu}}gs\alpha^* - \text{ int } (\mathbb{A}) \right)^c = \\ \bigcap \{ \mathcal{G}^c : \mathcal{G}^c \text{ is a } N_{\mathrm{eu}}gs\alpha^* - CS \text{ in } \mathbb{P} \text{ and } \mathbb{A}^c \subseteq \\ \mathcal{G}^c \} = N_{\mathrm{eu}}gs\alpha^* - cl(\mathbb{A}^c) \text{ . Hence, } \left(N_{\mathrm{eu}}gs\alpha^* - \text{ int } (\mathbb{A}) \right)^c = \\ \inf (\mathbb{A}) \right)^c = N_{\mathrm{eu}}gs\alpha^* - cl(\mathbb{A}^c) \text{ . Hence, } \left(N_{\mathrm{eu}}gs\alpha^* - cl(\mathbb{A}^c) \right).$

- (3) Since $0_{N_{eu}}$ and $1_{N_{eu}}$ are $N_{eu}-CS$, then by theorem 3.2, $0_{N_{eu}}$ and $1_{N_{eu}}$ are $N_{eu}gs\alpha^*-CS$. Hence, $N_{eu}gs\alpha^*-cl(0_{N_{eu}})=0_{N_{eu}}$, $N_{eu}gs\alpha^*-cl(1_{N_{eu}})=1_{N_{eu}}$.
- (4) Since $0_{N_{eu}}$ and $1_{N_{eu}}$ are $N_{eu}-OS$, then by theorem 4.3 (1), $0_{N_{eu}}$ and $1_{N_{eu}}$ are $N_{eu}gs\alpha^*-OS$. Hence, $N_{eu}gs\alpha^*-int(0_{N_{eu}})=0_{N_{eu}}$, $N_{eu}gs\alpha^*-int(1_{N_{eu}})=1_{N_{eu}}$.

Theorem 5.4: Let $(\mathbb{P}, \tau_{N_{eu}})$ be a N_{eu} TS . Then for any neutrosophic subsets \mathbb{A} and \mathbb{B} of a N_{eu} TS \mathbb{P} , we have

- (1) $N_{\text{eu}}gs\alpha^* int(A \cap B) = N_{\text{eu}}gs\alpha^* int(A) \cap N_{\text{eu}}gs\alpha^* int(B)$
- (2) $N_{eu}gs\alpha^* cl(A \cup B) = N_{eu}gs\alpha^* cl(A) \cup N_{eu}gs\alpha^* cl(B)$

Proof:

(1) $N_{eu}gs\alpha^* - int(A \cap B) = \bigcup \{G : A \cap B\}$ G is a $N_{eu}gs\alpha^* - OS$ in \mathbb{P} and $G \subseteq A \cap B$. Since $A \cap B \subseteq A$ and $A \cap B \subseteq B$, then by theorem 5.2 (7) , $N_{eu}gs\alpha^* - int(A \cap B) \subseteq$ $N_{eu}gs\alpha^* - int(A)$ and $N_{eu}gs\alpha^* - int(A)$ \mathbb{B}) $\subseteq N_{\mathrm{eu}}gs\alpha^* - int(\mathbb{B}) \Rightarrow$ $N_{eu}gs\alpha^*$ – $int(A \cap B) \subseteq N_{eu}gs\alpha^* - int(A) \cap$ $N_{eu}gs\alpha^* - int(B) \rightarrow (1)$. Now by theorem 5.2 (1), $N_{eu}gs\alpha^* - int(A) \subseteq A$ and $N_{eu}gs\alpha^* - int(A) \subseteq A$ $int(\mathbb{B}) \subseteq \mathbb{B} \Rightarrow \mathbb{N}_{eu}gs\alpha^* - int(\mathbb{A}) \cap \mathbb{N}_{eu}gs\alpha^*$ $int(B) \subseteq A \cap B \Rightarrow N_{eu}gs\alpha^* - int(N_{eu}gs\alpha^* - int(N_{eu}gs\alpha^*$ $int(A) \cap N_{eu}gs\alpha^* - int(B) \subseteq N_{eu}gs\alpha^* - int(B)$ $int(A \cap B)$. By (1) $N_{\rm eu}gs\alpha^*$ $int(N_{eu}gs\alpha^* - int(A)) \cap N_{eu}gs\alpha^*$ $int(N_{eu}gs\alpha^* - int(B)) \subseteq N_{eu}gs\alpha^*$ $int(A \cap B)$.By theorem 5.2 (5), $N_{eu}gs\alpha^*$ – $N_{eu}gs\alpha^*$ – $int(A) \cap N_{eu}gs\alpha^* - int(B) \subseteq$ $int (A \cap B) \rightarrow 2$. By 1 and 2 $N_{eu}gs\alpha^* - int(A \cap B) = N_{eu}gs\alpha^*$ $int(A) \cap N_{eu}gs\alpha^* - int(B)$.

(2) Since $N_{eu}gs\alpha^* - cl(A \cup B) = ((N_{eu}gs\alpha^* - cl(A \cup B))^c)^c$, then by theorem 5.3 (1), $N_{eu}gs\alpha^* - cl(A \cup B) = (N_{eu}gs\alpha^* - int(A \cup B)^c))^c = (N_{eu}gs\alpha^* - int(A^c \cap B^c))^c = (N_{eu}gs\alpha^* - int(A^c) \cap N_{eu}gs\alpha^* - int(B^c))^c$ (by (1)). Now, $N_{eu}gs\alpha^* - cl(A \cup B) = (N_{eu}gs\alpha^* - int(A)^c)^c \cup (N_{eu}gs\alpha^* - int(B)^c)^c = ((N_{eu}gs\alpha^* - cl(A))^c)^c \cup ((N_{eu}gs\alpha^* - cl(B))^c)^c$ (by theorem 5.3 (1)). Hence, $N_{eu}gs\alpha^* - cl(A \cup B) = N_{eu}gs\alpha^* - cl(A) \cup N_{eu}gs\alpha^* - cl(B)$.

Theorem 5.5: Let $(\mathbb{P}, \tau_{N_{eu}})$ be a N_{eu} TS. Then for any neutrosophic subsets A and B of a N_{eu} TS \mathbb{P} , we have

- (1) $N_{eu}gs\alpha^* int(A \cup B) \supseteq N_{eu}gs\alpha^* int(A) \cup N_{eu}gs\alpha^* int(B)$
- (2) $N_{eu}gs\alpha^* cl(A \cap B) \subseteq N_{eu}gs\alpha^* cl(A) \cap N_{eu}gs\alpha^* cl(B)$.

Proof:

- (1) Since $\mathbb{A} \subseteq \mathbb{A} \cup \mathbb{B}$ and $\mathbb{B} \subseteq \mathbb{A} \cup \mathbb{B}$, then by theorem 5.2 (7) , $N_{\mathrm{eu}}gs\alpha^* int(\mathbb{A}) \subseteq N_{\mathrm{eu}}gs\alpha^* int(\mathbb{A} \cup \mathbb{B})$ and $N_{\mathrm{eu}}gs\alpha^* int(\mathbb{B}) \subseteq N_{\mathrm{eu}}gs\alpha^* int(\mathbb{A} \cup \mathbb{B}) \Rightarrow N_{\mathrm{eu}}gs\alpha^* int(\mathbb{A} \cup \mathbb{B}) \supseteq N_{\mathrm{eu}}gs\alpha^* int(\mathbb{A} \cup \mathbb{B}) \supseteq N_{\mathrm{eu}}gs\alpha^* int(\mathbb{A}) \cup N_{\mathrm{eu}}gs\alpha^* int(\mathbb{B})$.
- (2) Since $\mathbb{A} \cap \mathbb{B} \subseteq \mathbb{A}$ and $\mathbb{A} \cap \mathbb{B} \subseteq \mathbb{B}$, then by theorem 5.2 (8) , $N_{\mathrm{eu}} gs\alpha^* cl(\mathbb{A} \cap \mathbb{B}) \subseteq \mathbb{N}_{\mathrm{eu}} gs\alpha^* cl(\mathbb{A})$ and $N_{\mathrm{eu}} gs\alpha^* cl(\mathbb{A} \cap \mathbb{B}) \subseteq \mathbb{N}_{\mathrm{eu}} gs\alpha^* cl(\mathbb{B}) \Rightarrow \mathbb{N}_{\mathrm{eu}} gs\alpha^* cl(\mathbb{A} \cap \mathbb{B}) \subseteq \mathbb{N}_{\mathrm{eu}} gs\alpha^* cl(\mathbb{A}) \cap \mathbb{N}_{\mathrm{eu}} gs\alpha^* cl(\mathbb{B})$.

Remark 5.6: The following example shows that the equality need not be hold in theorem 5.5.

Example 5.7: (1) Let $\mathbb{P} = \{p\}$ and $\mathbb{A} = \{\langle p, (0.7, 0.4, 0.6) \rangle\}$ be $N_{eu}(\mathbb{P})$. $\tau_{N_{eu}} = \{0_{N_{eu}}, 1_{N_{eu}}, \mathbb{A}\}$ is a N_{eu} TS on $(\mathbb{P}, \tau_{N_{eu}})$. $\mathbb{A}^c = \{\langle p, (0.6, 0.6, 0.7) \rangle\}$. Let $\mathcal{G} = \{\langle p, (0.8, 0.5, 0.7) \rangle\}$ and $\mathbb{H} = \{\langle p, (0.5, 0.3, 0.6) \rangle\}$ are two neutrosophic sets over \mathbb{P} .

(1) $N_{eu}gs\alpha^* - OS = \{0_{N_{eu}}, 1_{N_{eu}}, A, D, E\}$, where $D = \{\langle p, ([0.7,1], [0.6,1], [0,0.6]) \rangle\}$, $E = \{\langle p, ([0.7,1], [0.4,0.5], [0,0.6]) \rangle\}$. Now, $N_{eu}gs\alpha^* - int(\mathcal{G}) = 0_{N_{eu}}$, $N_{eu}gs\alpha^* - int(\mathcal{G}) = 0_{N_{eu}}$, $N_{eu}gs\alpha^* - int(\mathcal{G}) \cup N_{eu}gs\alpha^* - int(\mathcal{G} \cup \mathcal{H}) = F$, where $F = \{\langle p, ([0.7,0.8], [0.4,0.5],0.6) \rangle\}$. $N_{eu}gs\alpha^* - int(\mathcal{G} \cup \mathcal{H}) \neq N_{eu}gs\alpha^* - int(\mathcal{G}) \cup N_{eu}gs\alpha^* - int(\mathcal{G} \cup \mathcal{H}) \neq N_{eu}gs\alpha^* - int(\mathcal{G}) \cup N_{eu}gs\alpha^* - int(\mathcal{G} \cup \mathcal{H}) \geq N_{eu}gs\alpha^* - int(\mathcal{G}) \cup N_{eu}gs\alpha^* - int(\mathcal{G})$

(2) $N_{eu}gs\alpha^* - CS = \{0_{N_{eu}}, 1_{N_{eu}}, A^c, D, E\}$, where $D = \{\langle p, ([0,0.6], [0,0.4], [0.7,1]) \rangle \}$, $E = \{ \langle \mathcal{P}, ([0,0.6], [0.5,0.6], [0.7,1]) \rangle \}$. Now , $N_{eu}gs\alpha^* - cl(\mathcal{G}) = 1_{N_{eu}}$, $N_{eu}gs\alpha^*$ $cl({\rm H}')=1_{N_{eu}}.\ \ {\rm Then}\ \ ,\ \ {\rm N_{eu}}gs\alpha^*\,-\,cl(\mathcal{G})\ \cap$ $N_{eu}gs\alpha^* - cl(H) = 1_{N_{eu}}$. Since, $G \cap H =$ $\{\langle \mathcal{P}, (0.5, 0.3, 0.7) \rangle\}$, then $N_{eu}gs\alpha^*$ – where $cl(\mathcal{G} \cap \mathbf{H}) = F$, F = $\{\langle p, ([0.5,0.6], [0.3,0.4], 0.7) \}\}$. $N_{eu}gs\alpha^*$ – $cl(\mathcal{G} \cap \mathcal{H}) \neq N_{eu}gs\alpha^* - cl(\mathcal{G}) \cap N_{eu}gs\alpha^*$ cl(H), but $N_{eu}gs\alpha^* - cl(G \cap H) \subseteq N_{eu}gs\alpha^* - cl(G \cap H)$ $cl(\mathcal{G}) \cap N_{eu}gs\alpha^* - cl(\mathcal{H})$. Hence, the equality need not be hold.

References:

[1] Ali Abbas , N.M., & Shuker Mahmood Khalil , On New Classes of Neutrosophic Continuous And Contra Mappings in Neutrosophic Topological Spaces , Int. J. Nonlinear Anal. Appl. 12(2021) , No.1 , pp.718-725 , ISSN: 2008-6822 .
[2] Atanassov , K., Intuitionistic Fuzzy Sets ,

Fuzzy Sets And Systems, pp. 87-94, 1986.

[3] Blessie Rebecca, & S., Francina Shalini, A.,

[3] Blessie Rebecca, & S., Francina Shalini, A., Neutrosophic Generalized Regular Contra Continuity in Neutrosophic Topological Spaces,

International Journal of Research in Advent Technology, Vol.7, No.2, E-ISSN:2321-9637, pp.761-765, Feb 2019.

[4] Dhavaseelan , R., & Jafari , S., Generalized Neutrosophic Closed Sets , New Trends In Neutrosophic Theory And Applications , Vol. II , pp-261-273 .

[5] Evanzalin Ebenanjar, P., Jude Immaculate, H., & Bazil Wilfred, C., On Neutrosophic b-Open Sets in Neutrosophic Topological Space, International Conference On Applied And Computational Mathematics, IOP Publishing, Journal of Physics: Con. Series 1139(2018).

[6] Floretin Smarandache, Neutrosophic Set: A Generalization of Intuitionistic Fuzzy Set, Jorunal of Defense Resources Management, 2010,107-116.

[7] Jayanthi , D., α —Generalized Closed Sets in Neutrosophic Topological Spaces , International Journal of Mathematics Trends And Technology (IJMTT) , ISSN: 2231-5373 , pp.88-91 , March 2018.

[8] Maheswari ,C., & Chandrasekar , S., Neutrosophic bg-Closed Sets And its Continuity , Neutrosophic Sets And Systems , Vol.36 , pp.108-120 , 2020 .

[9] Maheswari ,C., Sathyabama ,M., & Chandrasekar ,S., Neutrosophic Generalized b-Closed Sets in Neutrosophic Topological Spaces , International Conference on Applied And Computional Mathematics , IOP Publishing , Journal of Physics , Conf. series :1139(2018) .

[10] Narmatha ,S., Glory Bebina ,E., & Vishnu Priyaa ,R., On $\pi g\beta$ —Closed Sets And Mappings in Neutrosophic Topological Spaces , International Journal of Innovative Technology And Exploring Engineering(IJITEE) , ISSN:2278-3075 , pp.505-510 , Vol-8 , OCT 2019 .

- [11] Pushpalatha , A., & Nandhini , T., Generalized Closed Sets Via Neutrosophic Topological Spaces , Malaya Journal Of Mathematik , Vol. 7 , No. 1 , pp. 50-54 , 2019 .
- [12] Qays Hatem Imran, Smarandache, F., Raid K-Al-Hamido & Dhavaseelan, R., On New Semi Alpha Open Sets, Neutrosophic Sets And Systems, pp.37-42, 18/2017.
- [13] Sreeja, D., & Sarankumar, T., Generalized Alpha Closed Sets in Neutrosophic Topological Spaces, JASC, Journal of Applied Science & Computations, ISSN:1076-5131, Vol.5, Issue 11, pp.1816-1823, Nov-2018.
- [14] Venkateswara Rao ,V., & Srinivasa Rao ,Y., Neutrosophic Pre Open Sets And Pre Closed Sets in Neutrosophic Topology , International Journal of ChemTech Research , ISSN:0974-4290 , Vol.10 , No.10 , pp.449-458 , 2017 .
- [15] Zadeh , L.A., Fuzzy Sets , Inform And Control , Vol.8 , pp.338-353 , 1965 .