Multi-Attribute Decision Support Model Based on Bijective Hypersoft Expert Set

Muhammad Ihsan 1 , Muhammad Saeed 2,* , Atiqe Ur Rahman 2 , Florentin Smarandache 3 Department of Mathematics,

University of Management and Technology, Lahore, Pakistan,

Email: mihkhb@gmail.com 1 , muhammad.saeed@umt.edu.pk 2,* , aurkhb@gmail.com 2 Department of Mathematics,

University of New Mexico, Gallup, NM 87301, USA, Email: smarand@unm.edu ³

Received: —,2021 / Accepted: —-, 2021 / Published online: 00—-, 2021

Abstract. Soft set tackles a single set of attributes while its extension hypersoft set is projected for dealing attribute-valued disjoint sets corresponding to distinct attributes with entitlement of multi-argument approximate function. In order to furnish soft set-like models with multi-decisive opinions of multi-experts, a new model i.e. soft expert set has been developed but this is inadequate for handling the scenario where partitioning of attributes into their respective attribute-valued sets, is required. Hence hypersoft expert set has made its place to be developed. This article intends to develop a new type of hypersoft set called bijective hypersoft expert set which is more flexible and effective. After characterization of its essential properties and set-theoretic operations like union, relaxed and restricted AND, a decision-support system is designed which is characterized by new operations such as decision system, reduced decision system, etc. with illustrated examples. The proposed decision-support system is applied in multi-attribute decision-making process to manage a real-life application.

AMS (MOS) Subject Classification Codes: 91B06; 93E25

Key Words: Soft set, Soft expert set, Bijective soft set, Hypersoft set, Hypersoft expert set, Bijective hypersoft set, Bijective hypersoft expert set.

1. Introduction

In 1999, Molodtsov [1] introduced the structure of soft set to explain problems of vague data and uncertain environment. After this, Maji et al. [2] presented its some basic properties, operations, laws and used this structure in different fields to explain different situations. In 2005, Pei et al. [3] explained the relationship between soft set and information system. Many other researchers [4]-[9] worked on this theory and introduced some new

1

operations, properties, laws and used them in decision-making problems. Saeed et al. [10] made use of this theory and introduced soft elements and members. Rahman et al. [11, 12] conceptualized m-convexity (m-concavity) and (m, n)-convexity ((m, n)-concavity) on soft sets with some properties. Gong et al. [27] conceptualized new structure of bijective soft set and discussed its essential characteristics. Kamacı et al. [13, 14, 15, 16] presented bijective soft matrix theory and reviewed different operations by making its use in decision making system. He also developed the structures of N-soft set, bipolar N-soft set and studied their applications. Many researchers [17, 18, 19, 20, 21, 22, 23, 24, 25, 26] broadened soft set theory, and developed different soft-like hybrids to make its use in many different fields like decision making and information system.

Alkhazalah [28] introduced the concept of soft expert set to solve the problem of different opinions of different experts in a single model. He used this structure in different areas like medical diagnosis and decision making. Ihsan et al. [29, 30] introduced convexity (concavity) on soft expert sets and fuzzy soft expert sets respectively and proved their certain properties. Soft set is used only for the single set of attributes whereas hypersoft set, developed by Smarandache [31], is useful for tackling further partitioning of attributes into their respective sub-attributive values in the form of disjoint sets. In 2020, Saeed et al. [32, 33] studied basic properties, operations of hypersoft set and explained with different examples. In 2020, Rahman et al. [34, 35] developed some new structures of hypersoft set like complex fuzzy hypersoft set and introduced the concept of convexity in hypersoft set. In 2021, Rahman et al. [36, 42, 43] presented some new structures like rough, fuzzy parameterized, neutrosophic hypersoft set and used them in decision-making problems. Saeed et al. [37, 38, 39, 41] worked on hypersoft classes, complex multi-fuzzy hypersoft set and explained some new methods of decision making for mappings. They also presented hypersoft graphs, a new class of hypersoft set with some characteristics. Working on hypersoft set, Yolcu et al. [44] gave the idea of fuzzy, intuitionistic fuzzy hypersoft sets and made use of them in decision making. Saqlain et al. [47, 48, 49] made their contributions in hypersoft set by introducing single and multi-valued neutrosophic hypersoft sets and calculated their tangent similarity measures. They described aggregate operators and TOPSIS method for neutrosophic hypersoft sets. Ihsan et al. [40] extended hypersoft set to hypersoft expert set and used it in decision-making problems. Ihsan et al. [45] introduced the structure of fuzzy hypersoft expert set with application in decision making problem. Ali et al. [63] developed the Einstein geometric aggregation operators using a novel complex interval-valued Pythagorean Fuzzy setting with application in green supplier chain management. Riaz et al. [64] worked on decision-making problems and described certain properties of soft multi set topologies with applications in decision-making problems.

- 1.1. **Research Gap and Motivation.** Following points will explain the research gap and motivations behind the choice of proposed structure:
 - (1) Gong et al. [27] introduced the concept of bijective soft set and discussed its necessary operations with an application in decision-making problems. After this, Gong et al. [53] extended their work in fuzzy environment and introduced the concept of bijective fuzzy soft set to deal with more uncertain problems. Kumar et al. [54] applied this concept of bijective soft set-in classification of medical data. Tiwari et al. [55] used an integrated Shannon entropy and TOPSIS for product

design concept evaluation based on bijective soft set. Gong et al. [56] worked on bijective soft set and used it in mining data from soft set environments, and applied it in some fields. Tiwari et al. [57] made a bijective soft set theoretic approach for concept selection in design process. Inbarani et al. [58] introduced the idea of rough bijective soft set and applied in medical field. Kumar et al. [59] gave the idea of improved bijective soft set and proposed a model for the classification of cancer based on gene expression profiles. Kumar et al. [60] discussed the structure of hybrid bijective soft set to construct novel automatic classification system for analysis of ECG signal and decision making purposes. Kumar et al. [61] also applied this structure for the identification of heart valve disease. Kamac et al. [62] introduced the concept of bijective soft matrix and applied for decision-making problems.

- (2) It can be seen that the above bijective soft set like models deal with opinion of only single expert. But in real life, there are certain situations where we need different opinions of different experts in one model. To tackle this situation, soft expert set has been developed. However, there are also certain situations when attributes are further classified into their respective attribute-valued disjoint sets. Therefore, there is a need of new structure to handle such situations with multi-decisive opinions under multi-argument soft set like environment. So hypersoft expert set is developed.
- (3) Having motivation from the above literature in general and specifically from [27] and [40], a novel structure bijective hypersoft expert set (BHSES) is developed with certain properties. By using the aggregate operations of BHSES, a new decision system is proposed and is used in multi-attribute decision-making problems.

1.2. **Main Contributions.** The following are the main contributions of the proposed study:

- (1) Some basic definitions of soft set, soft expert, hypersoft set, bijective soft set, bijective hypersoft set are reviewed from literature.
- (2) Theory of bijective hypersoft expert set (i.e., axiomatic properties, set-theoretic operations and laws) is conceptualized with the support of numerical illustrative examples.
- (3) An algorithm is proposed and then validated by applying it in decision-making based daily-life problem.
- (4) The proposed study is compared with existing relevant models to judge the advantageous aspects of proposed study.
- (5) Paper is summarized with description of its scope and future directions to motivate the readers for further extensions.

1.3. **Paper Organization.** The remaining paper is organized as under:

Section 2 recalls some basic definitions and terms from existing literature to support main results. Section 3 describes the theory of bijective hypersoft expert set with the description of its decision support system. Section 4 proposes an algorithm based of BHSES with utilization in daily-life multi-attribute decision-making problem and section 5 summarizes the paper with more future directions.

2. Preliminaries

The following portion describes some basic definitions related to the literature and suggested work. In this article, universe of discourse will be shown by \mathfrak{Z} , \mathfrak{S} will be used as an experts set and \mathfrak{D} as an opinions set, $\mathfrak{R} = \mathfrak{P} \times \mathfrak{S} \times \mathfrak{D}$ with $\mathfrak{V} \subseteq \mathfrak{R}$, while \mathfrak{P} a set of parameters. The symbol $\mathcal{P}(\mathfrak{Z})$ will denote the power set of universe of discourse.

Definition 1. [1]

A soft set S is defined by an approximate function $\beta_S:\theta\to\mathcal{P}(\mathfrak{Z})$ which is defined by approximate elements $\beta_S(\hat{s})$ for all members \hat{s} of θ , a subset of parameters.

Definition 2. [2]

A soft expert set ϖ is characterized by an approximate function $\Phi_{\varpi}: \mathfrak{H} \to \mathcal{P}(\mathfrak{J})$ which is defined by approximate elements $\Phi_{\varpi}(\hat{v})$ for all members \hat{v} of \mathfrak{H} where $\mathfrak{H} \subseteq \mathfrak{P}$.

Definition 3. [31]

Let $\phi_1, \phi_2, \phi_3,, \phi_{\pi}$, for $\pi \geq 1$, be π distinct attributes having $\mathfrak{H}_1, \mathfrak{H}_2, \mathfrak{H}_3,, \mathfrak{H}_{\pi}$ as their respective attribute-valued sets with $\mathfrak{H}_{\alpha} \cap \mathfrak{H}_{\beta} = \emptyset$, for $\alpha \neq \beta$, and $\alpha, \beta \in \{1, 2, 3, ..., \pi\}$. The pair (Ψ, \mathfrak{G}) is named as a *hypersoft set* over \mathfrak{J} where $\mathfrak{G} = \mathfrak{H}_1 \times \mathfrak{H}_2 \times \mathfrak{H}_3 \times \times \mathfrak{H}_{\pi}$ and $\Psi_{\Upsilon} : \mathfrak{G} \to \mathcal{P}(\mathfrak{J})$ is its multi-argument approximate function characterized by approximate elements $\Psi_{\Upsilon}(\hat{g})$ for all $\hat{g} \in \mathfrak{G}$.

Definition 4. [27]

A bijective soft set is a soft set (β_S, θ) which satisfies the following conditions:

- (i) $\bigcup_{\epsilon \in \theta} \beta_S(\epsilon) = \mathfrak{Z}$
- (ii) $\beta_S(\epsilon_i) \cap \beta_S(\epsilon_j) = \emptyset$, for any two parameters $\epsilon_i, \epsilon_j \in \theta, \ \epsilon_i \neq \epsilon_j$.

For the sake of collection of abstracts cum statistical data and information, scholars design questionnaires having description of parametric statements in the form of questions and then it is circulated to individuals with relevant field of expertise. In this scenario, the approached evaluators for such questionnaires are directed to provide their expert opinions regarding the relevance of certain elements of universal set (topics/areas under consideration for the study) with parameters. After the completion of this data collection, the submissions are further reviewed by internal experts (scholars, supervisors, co-supervisors etc.) who classify the collected data on agree and dis-agree basis and then evaluate with their weightage subject to the condition that two opinions collected from field should not overlap. It is pertinent to mention here that the questions of questionnaires are of parametric nature i.e. each question is parameterized with sub-parametric values. The existing literature is inadequate to provide a uncertain model to tackle such scenario so bijective hypersoft expert set is being characterized in the following section to address the scarcity of literature.

3. BIJECTIVE HYPERSOFT EXPERT SET (BHSES-SET)

The following portion contains the definition of hypersoft expert set with example and the theory of bijective hypersoft expert set.

Definition 5. [52]

Let $\hat{p}_1, \hat{p}_2, \hat{p}_3,, \hat{p}_n$, for $n \geq 1$, be n distinct attributes having $\mathcal{P}_1, \mathcal{P}_2, \mathcal{P}_3,, \mathcal{P}_n$ as

their respective attribute-valued sets with $\mathcal{P}_i \cap \mathcal{P}_i = \emptyset$, for $i \neq j$. The pair (Ψ, \mathfrak{G}) is said to be bijective hypersoft set over \mathfrak{Z} where $\mathfrak{G} = \mathfrak{H}_1 \times \mathfrak{H}_2 \times \mathfrak{H}_3 \times \ldots \times \mathfrak{H}_{\pi}$ and $\Psi_{\Upsilon} : \mathfrak{G} \to \mathcal{P}(\mathfrak{Z})$ is its multi-argument approximate function characterized by approximate elements $\Psi_{\Upsilon}(\hat{g})$ for all $\hat{g} \in \mathfrak{G}$ which satisfy the following conditions:

- $\begin{array}{ll} \text{(1)} & \bigcup\limits_{\hat{g} \in \mathfrak{S}} \Psi_{\Upsilon}(\hat{g}) = \mathfrak{Z} \\ \text{(2)} & \Psi_{\Upsilon}(\hat{g}_i) \cap \Psi_{\Upsilon}(\hat{g}_j) = \emptyset \text{, for } \hat{g}_i, \hat{g}_j \in \mathfrak{S}, \hat{g}_i \neq \hat{g}_j. \end{array}$

Definition 6. [40]

A pair (ξ, \mathbb{S}) is known as a hypersoft expert set over \mathfrak{Z} , where $\xi : \mathbb{S} \to \mathcal{P}(\mathfrak{Z})$ where $\mathcal{P}(\mathfrak{Z})$ is collection of all fuzzy subsets of \mathfrak{Z} , $\mathbb{S} \subseteq \mathcal{H} = \mathcal{G} \times \mathcal{D} \times \mathbb{C}$ and $\mathcal{G} = \mathcal{G}_1 \times \mathcal{G}_2 \times \mathcal{G}_3 \times \mathcal{G}_2 \times \mathcal{G}_3 \times \mathcal{G}_2 \times \mathcal{G}_3 \times \mathcal{G}_3 \times \mathcal{G}_2 \times \mathcal{G}_3 \times$ $\dots \times \mathcal{G}_p$ here \mathcal{G}_i are disjoint attributive-valued sets corresponding to distinct attributes $g_i, i = 1, 2, 3, ..., p, \mathcal{D}$ be a set of specialists (operators) and \mathbb{C} be a set of conclusions. For simplicity, $\mathbb{C} = \{0 = disagree, 1 = agree\}.$

Example 3.1. Suppose that Mr. John intends to purchase a mask from a medical store. There are four types of masks available in market forming initial universe $\mathfrak{Z} = \{\mathbb{k}_1, \mathbb{k}_2, \mathbb{k}_3, \mathbb{k}_4\}$. The choice of mask may be carried out by keeping in mind the following attributes i.e. γ_1 = Colour, γ_2 = Size, and γ_3 = Price. Following are the attribute-valued sets corresponding to these attributes are:

```
\tau_{\gamma_1} = \{\gamma_{11}, \gamma_{12}\}
\begin{split} &\tau_{\gamma_2} = \{\gamma_{21}, \gamma_{22}\} \\ &\tau_{\gamma_3} = \{\gamma_{31}, \gamma_{32}\} \\ &\operatorname{then} \, \tau_{\gamma} = \tau_{\gamma_1} \times \tau_{\gamma_2} \times \tau_{\gamma_3} \end{split}
```

$$\tau_{\gamma} = \left\{ \begin{array}{l} (\varpi_{1}, \{\gamma_{11}, \gamma_{21}, \gamma_{31}\}), (\varpi_{2}, \{\gamma_{11}, \gamma_{21}, \gamma_{32}\}), \\ (\varpi_{3}, \{\gamma_{11}, \gamma_{22}, \gamma_{31}\}), (\varpi_{4}, \{\gamma_{11}, \gamma_{22}, \gamma_{32}\}), \\ (\varpi_{5}, \{\gamma_{12}, \gamma_{21}, \gamma_{31}\}), (\varpi_{6}, \{\gamma_{12}, \gamma_{21}, \gamma_{32}\}), \\ (\varpi_{7}, \{\gamma_{12}, \gamma_{22}, \gamma_{31}\}), (\varpi_{8}, \{\gamma_{12}, \gamma_{22}, \gamma_{32}\}) \end{array} \right\}$$

Now $\mathfrak{H} = \tau_{\gamma} \times \mathfrak{D} \times \mathfrak{C}$

$$\mathfrak{H} = \begin{cases} (\varpi_{1},\phi_{1},0), (\varpi_{1},\phi_{1},1), (\varpi_{1},\phi_{2},0), (\varpi_{1},\phi_{2},1), (\varpi_{1},\phi_{3},0), (\varpi_{1},\phi_{3},1), \\ (\varpi_{2},\phi_{1},0), (\varpi_{2},\phi_{1},1), (\varpi_{2},\phi_{2},0), (\varpi_{2},\phi_{2},1), (\varpi_{2},\phi_{2},0), (\varpi_{2},\phi_{3},1), \\ (\varpi_{3},\phi_{1},0), (\varpi_{3},\phi_{1},1), (\varpi_{3},\phi_{2},0), (\varpi_{3},\phi_{2},1), (\varpi_{3},\phi_{3},0), (\varpi_{3},\phi_{3},1), \\ (\varpi_{4},\phi_{1},0), (\varpi_{4},\phi_{1},1), (\varpi_{4},\phi_{2},0), (\varpi_{4},\phi_{2},1), (\varpi_{4},\phi_{3},0), (\varpi_{4},\phi_{3},1), \\ (\varpi_{5},\phi_{1},0), (\varpi_{5},\phi_{1},1), (\varpi_{5},\phi_{2},0), (\varpi_{5},\phi_{2},1), (\varpi_{5},\phi_{3},0), (\varpi_{5},\phi_{3},1), \\ (\varpi_{6},\phi_{1},0), (\varpi_{6},\phi_{1},1), (\varpi_{6},\phi_{2},0), (\varpi_{6},\phi_{2},1), (\varpi_{6},\phi_{3},0), (\varpi_{6},\phi_{3},1), \\ (\varpi_{7},\phi_{1},0), (\varpi_{7},\phi_{1},1), (\varpi_{7},\phi_{2},0), (\varpi_{7},\phi_{2},1), (\varpi_{7},\phi_{3},0), (\varpi_{7},\phi_{3},1), \\ (\varpi_{8},\phi_{1},0), (\varpi_{8},\phi_{1},1), (\varpi_{8},\phi_{2},0), (\varpi_{8},\phi_{2},1), (\varpi_{8},\phi_{3},0), (\varpi_{8},\phi_{3},1) \end{cases}$$

$$\phi_{\mathfrak{W}} = \left\{ \begin{aligned} (\varpi_{1}, \phi_{1}, 0), (\varpi_{1}, \phi_{1}, 1), (\varpi_{1}, \phi_{2}, 0), (\varpi_{1}, \phi_{2}, 1), (\varpi_{1}, \phi_{3}, 0), (\varpi_{1}, \phi_{3}, 1), \\ (\varpi_{2}, \phi_{1}, 0), (\varpi_{2}, \phi_{1}, 1), (\varpi_{2}, \phi_{2}, 0), (\varpi_{2}, \phi_{2}, 1), (\varpi_{2}, \phi_{3}, 0), (\varpi_{2}, \phi_{3}, 1), \\ (\varpi_{3}, \phi_{1}, 0), (\varpi_{3}, \phi_{1}, 1), (\varpi_{3}, \phi_{2}, 0), (\varpi_{3}, \phi_{2}, 1), (\varpi_{3}, \phi_{3}, 0), (\varpi_{3}, \phi_{3}, 1), \end{aligned} \right\}$$

be a subset of \mathfrak{H} and ϖ_1 = Price ϖ_2 = Colour ϖ_3 = Reliability

 $\mathfrak{D} = \{\phi_1, \phi_2, \phi_3, \}$ be a set of specialists.

Following survey depicts choices of three specialists:

```
\pi_1 = \pi(\varpi_1, \phi_1, 1) = \{ \mathbb{k}_2, \mathbb{k}_4 \},
                                                                                                       \pi_2 = \pi(\varpi_1, \phi_2, 1) = \{ \mathbb{k}_1, \mathbb{k}_2, \mathbb{k}_3, \mathbb{k}_4 \},
\pi_3 = \pi(\varpi_1, \phi_3, 1) = \{ \mathbb{k}_3 \},
                                                                                                       \pi_4 = \pi(\varpi_2, \phi_1, 1) = \{ \mathbb{k}_2, \mathbb{k}_3 \},
\pi_5 = \pi(\varpi_2, \phi_2, 1) = \{ \mathbb{k}_4 \},
                                                                                                       \pi_6 = \pi(\varpi_2, \phi_3, 1) = \{ \mathbb{k}_1, \mathbb{k}_4 \},
\pi_7 = \pi(\varpi_3, \phi_1, 1) = \{ \mathbb{k}_1 \},
                                                                                                       \pi_8 = \pi(\varpi_3, \phi_2, 1) = \{ \mathbb{k}_1, \mathbb{k}_3 \},
\pi_9 = \pi(\varpi_3, \phi_3, 1) = \left\{ \mathbb{k}_2, \mathbb{k}_3, \mathbb{k}_4 \right\},\,
                                                                                                       \pi_{10} = \pi(\varpi_1, \phi_1, 0) = \{ \mathbb{k}_2 \},
\pi_{11} = \pi(\varpi_1, \phi_2, 0) = \{ \mathbb{k}_1, \mathbb{k}_3, \mathbb{k}_4 \},
                                                                                                       \pi_{12} = \pi(\varpi_1, \phi_3, 0) = \{ \mathbb{k}_1, \mathbb{k}_2, \mathbb{k}_4 \},
\pi_{13} = \pi(\varpi_2, \phi_1, 0) = \{ \mathbb{k}_1, \mathbb{k}_2 \},
                                                                                                       \pi_{14} = \pi(\varpi_2, \phi_2, 0) = \{ \mathbb{k}_1, \mathbb{k}_2, \mathbb{k}_3, \mathbb{k}_4 \},
\pi_{15} = \pi(\varpi_2, \phi_3, 0) = \{ \mathbb{k}_1, \mathbb{k}_2, \mathbb{k}_4 \},
                                                                                                        \pi_{16} = \pi(\varpi_3, \phi_1, 0) = \{ \mathbb{k}_3, \mathbb{k}_4 \},
\pi_{17} = \pi(\varpi_3, \phi_2, 0) = \{ \mathbb{k}_1, \mathbb{k}_2 \},
                                                                                                        \pi_{18} = \pi(\varpi_3, \phi_3, 0) = \{ \mathbb{k}_1, \mathbb{k}_2, \mathbb{k}_3 \}.
```

The hypersoft expert set can be written as

$$(\pi, \phi_{\mathfrak{W}}) = \begin{cases} ((\varpi_{1}, \phi_{1}, 1), \{\Bbbk_{2}, \Bbbk_{4}\}), ((\varpi_{1}, \phi_{2}, 1), \{\Bbbk_{1}, \Bbbk_{2}, \Bbbk_{3}, \Bbbk_{4}\}), ((\varpi_{1}, \phi_{3}, 1), \{\Bbbk_{3}\}), \\ ((\varpi_{2}, \phi_{1}, 1), \{\Bbbk_{2}, \Bbbk_{3}\}), ((\varpi_{2}, \phi_{2}, 1), \{\Bbbk_{4}\}), ((\varpi_{2}, \phi_{3}, 1), \{\Bbbk_{1}, \Bbbk_{4}\}), \\ ((\varpi_{3}, \phi_{1}, 1), \{\Bbbk_{1}\}), ((\varpi_{3}, \phi_{2}, 1), \{\Bbbk_{1}, \Bbbk_{3}\}), ((\varpi_{3}, \phi_{3}, 1), \{\Bbbk_{2}, \Bbbk_{3}, \Bbbk_{4}\}), \\ ((\varpi_{1}, \phi_{1}, 0), \{\Bbbk_{2}\}), ((\varpi_{1}, \phi_{2}, 0), \{\Bbbk_{1}, \Bbbk_{3}, \Bbbk_{4}\}), ((\varpi_{1}, \phi_{3}, 0), \{\Bbbk_{1}, \Bbbk_{2}, \Bbbk_{4}\}), \\ ((\varpi_{2}, \phi_{1}, 0), \{\Bbbk_{1}, \Bbbk_{2}, \Bbbk_{4}\}), ((\varpi_{2}, \phi_{2}, 0), \{\Bbbk_{1}, \Bbbk_{2}, \Bbbk_{3}, \Bbbk_{4}\}), ((\varpi_{3}, \phi_{3}, 0), \{\Bbbk_{1}, \Bbbk_{2}, \Bbbk_{4}\}), \\ ((\varpi_{3}, \phi_{1}, 0), \{\&_{3}, \Bbbk_{4}\}), ((\varpi_{3}, \phi_{2}, 0), \{\&_{1}, \Bbbk_{2}\}), ((\varpi_{3}, \phi_{3}, 0), \{\&_{1}, \Bbbk_{2}, \Bbbk_{3}\}) \end{cases}$$

Following table represents the hypersoft expert set (π, \mathfrak{S}) , TABLE 1, with $\mathbb{k}_i \in \mathfrak{S}(\varpi_i)$ then $\widehat{\oplus}$ otherwise $\widehat{\otimes}$.

	k_1	k_2	k ₃	k_4
π_1	$\widehat{\otimes}$	$\widehat{\oplus}$	\otimes	$\widehat{\oplus}$
π_2	$\widehat{\oplus}$	$\widehat{\oplus}$	$(\bigoplus (\bigoplus (\bigoplus (\bigotimes (\bigotimes (\bigotimes (\bigotimes (\bigoplus (\bigotimes (\bigotimes$	$\widehat{\oplus}$
π_3	\otimes	\otimes	$ \widehat{\oplus} $	\otimes
π_4	$\widehat{\otimes}$	$\widehat{\oplus}$	$\widehat{\oplus}$	$\widehat{\otimes}$
π_5	$\widehat{\otimes}$	$\widehat{\otimes}$	$\widehat{\otimes}$	$\widehat{\oplus}$
π_6	⊗⊗⊕⊕⊕		⊗	⊗⊕⊗⊗⊗⊗
π_7	$\widehat{\oplus}$	$\widehat{\otimes}$	$\widehat{\otimes}$	$\widehat{\otimes}$
π_8	$\widehat{\oplus}$	$\widehat{\otimes}$	$\widehat{\oplus}$	$\hat{\otimes}$
π_9	$\widehat{\otimes}$	$\widehat{\oplus}$	$\widehat{\oplus}$	$\widehat{\oplus}$
π_{10}	$\widehat{\otimes}$	$\widehat{\oplus}$	⊗	$\widehat{\otimes}$
π_{11}	$\widehat{\oplus}$		-	$\hat{\oplus}$
π_{12}	$\widehat{\oplus}$	$\widehat{\oplus}$	$ \hat{\otimes} $	$\widehat{\oplus}$
π_{13}		ê ê	⊗	⊕⊕⊗⊕⊕⊕
π_{14}	$\widehat{\oplus}$	$\widehat{\oplus}$	$\widehat{\oplus}$	$\widehat{\oplus}$
π_{15}	$\widehat{\oplus}$	$\widehat{\oplus}$	⊗	$\widehat{\oplus}$
π_{16}	$\widehat{\otimes}$	$\widehat{\otimes}$	Ê	ê
π_{17}	$\widehat{\oplus}$	$\widehat{\oplus}$	$\widehat{\otimes}$	$\widehat{\otimes}$
π_{18}	$\widehat{\oplus}$	$\widehat{\oplus}$		$\widehat{\otimes}$

TABLE 1. (π, S) shows the tabular representation of HSES

Definition 7. A hypersoft expert set (π, S) is named as a bijective hypersoft expert set if

- $(1) \bigcup_{\varpi \in \mathcal{S}} \pi(\varpi) = \mathfrak{Z}$
- (2) $\pi(\varpi_i) \cap \pi(\varpi_i) = \emptyset$ for any two $\varpi_i, \varpi_i \in \mathfrak{S}, \varpi_i \neq \varpi_i$

The symbol Υ_{BHSES} denotes the collection of all BHSESs over 3 .

Example 3.2. Considering Example 3.1, we get BHSES

$$(\pi, \mathfrak{S}) = \left\{ (\varpi_1, (\Bbbk_2, \Bbbk_4), (\varpi_2, \Bbbk_3), (\varpi_3, (\Bbbk_1)) \right\}$$

and TABLE 2 shows the tabular form of bijective hypersoft expert set.

	k_1	k_2	k ₃	k_4
$\overline{\omega}_1$	$\widehat{\otimes}$	$\widehat{\oplus}$	$\widehat{\otimes}$	$\widehat{\oplus}$
$\overline{\omega}_2$	$\hat{\otimes}$	$\hat{\otimes}$	Ô	$\hat{\otimes}$
$\overline{\omega}_3$	ê	$\hat{\otimes}$	$\hat{\otimes}$	$\hat{\otimes}$
$\overline{\omega}_4$	$\widehat{\oplus}$	$\hat{\otimes}$	$\hat{\otimes}$	$\hat{\otimes}$

TABLE 2. The table form of BHSES (π, \mathfrak{S})

Definition 8. The operation AND between two hypersoft expert sets (π_1, \mathfrak{S}_1) and (π_2, \mathfrak{S}_2) , shown as $(\pi_1, \mathfrak{S}_1) \bigwedge (\pi_2, \mathfrak{S}_2)$, is a hypersoft expert set (π_3, \mathfrak{S}_3)) with $\mathfrak{S}_3 = \mathfrak{S}_1 \times \mathfrak{S}_2$ and for $\varpi \in \mathfrak{S}_3$,

$$\pi_3(\varpi) = \pi_1(\varpi) \cap \pi_2(\varpi)$$

Theorem 3.3. Suppose (π_1, \mathfrak{H}_1) and (π_2, \mathfrak{H}_2) are BHSESs, then $(\pi_1, \mathfrak{H}_1) \bigwedge (\pi_2, \mathfrak{H}_2)$ is a BHSES.

Proof. Using definition 7, we have

$$(\pi_1,\mathfrak{H}_1) \wedge (\pi_2,\mathfrak{H}_2) = (\pi_3,\mathfrak{H}_3)$$
, where $\mathfrak{H}_3 = \mathfrak{H}_1 \times \mathfrak{H}_2$ and $\pi_3(\mathfrak{h}_1,\mathfrak{h}_2) = \pi_1(\mathfrak{h}_1) \cap \pi_2(\mathfrak{h}_2)$, $\forall (\mathfrak{h}_1,\mathfrak{h}_2) \in \mathfrak{H}_3$.

Consider $\varepsilon \in \mathfrak{H}_3$ is a parameter of (π_3, \mathfrak{H}_3) then

$$\pi_3(\varepsilon) = \pi_1(\mathfrak{h}_1) \cap \pi_2(\mathfrak{h}_2)$$

$$\therefore \bigcup_{\varepsilon \in \mathfrak{H}_{2}} \pi_{3}(\varepsilon) = \bigcup_{\mathfrak{h}_{1} \in \mathfrak{H}_{1}} \bigcup_{\mathfrak{h}_{2} \in \mathfrak{H}_{2}} \pi_{1}\left(\mathfrak{h}_{1}\right) \cap \pi_{2}\left(\mathfrak{h}_{2}\right) = \bigcup_{\mathfrak{h}_{1} \in \mathfrak{H}_{1}} \pi_{1}\left(\mathfrak{h}_{1}\right) \cap \left(\bigcup_{\mathfrak{h}_{2} \in \mathfrak{H}_{2}} \pi_{2}\left(\mathfrak{h}_{2}\right)\right) = \bigcup_{\mathfrak{h}_{1} \in \mathfrak{H}_{1}} \pi_{1}\left(\mathfrak{h}_{1}\right) \cap \mathfrak{Z} = \mathfrak{Z}.$$

Suppose $\varepsilon_i, \varepsilon_j \in \mathfrak{H}_3, \varepsilon_i \neq \varepsilon_j, \varepsilon_i = \alpha_1 \times \beta_1, \alpha_1 \in \mathfrak{H}_1, \beta_1 \in \mathfrak{H}_2, \varepsilon_j = \alpha_2 \times \beta_2, \alpha_2 \in \mathfrak{H}_1, \beta_2 \in \mathfrak{H}_2$. Then

$$\pi_3(\varepsilon_i) \cap \pi_3(\varepsilon_i) = (\pi_1(\alpha_1) \cap \pi_2(\beta_1)) \cap (\pi_1(\alpha_2) \cap \pi_2(\beta_2)) = \emptyset.$$

Hence $(\pi_3, \mathfrak{H}_3) = (\pi_1, \mathfrak{H}_1) \wedge (\pi_2, \mathfrak{H}_2)$ is a bijective hypersoft expert set.

Definition 9. A HSES (π, \mathfrak{S}) is named as a *null HSES*, shown as $(\pi, \mathfrak{S})_{\Phi}$, if $\pi(\varpi) = \emptyset$, $\forall \varpi \in \mathfrak{S}$.

Definition 10. The operation union between two HSESs is a HSES (π_3, \mathfrak{S}_3) with $\mathfrak{S}_3 = \mathfrak{S}_1 \cup \mathfrak{S}_2$

$$\pi_{3}(\varpi) = \begin{cases} \pi_{1}(\varpi) & \varpi \in (\mathfrak{S}_{1} \setminus \mathfrak{S}_{2}) \\ \pi_{2}(\varpi) & \varpi \in (\mathfrak{S}_{2} \setminus \mathfrak{S}_{1}) \\ \pi_{1}(\varpi) \cup \pi_{2}(\varpi) & \varpi \in (\mathfrak{S}_{1} \cap \mathfrak{S}_{2}) \end{cases}$$

for $\varpi \in \mathfrak{S}_3$.

Theorem 3.4. Suppose (π, \mathfrak{H}) is a BHSES. Then $(\pi, \mathfrak{H}) \cup (\pi, \mathfrak{H})_{\Phi}$ is a BHSES.

Proof. Suppose $(\pi, \mathfrak{H})_{\Phi} = (\pi_{\Phi}, \mathfrak{H}_1)$,

by using the definitions of 9 and 10, we get

$$\begin{aligned} &(\pi_2, \mathfrak{H}_2) = (\pi, \mathfrak{H}) \cup (\pi_{\Phi}, \mathfrak{H}_1) \\ &= \begin{cases} &\pi(\epsilon) & ; \epsilon \in \mathfrak{H} - \mathfrak{H}_1 \\ &\pi_{\Phi}(\epsilon) = \emptyset & ; \epsilon \in \mathfrak{H}_1 - \mathfrak{H} = (\pi, \mathfrak{H} \cup \mathfrak{H}_1) \\ &\pi(\epsilon) \cup \pi_{\Phi}(\epsilon) = \pi(\epsilon) \cup \emptyset & ; \epsilon \in \pi \cap \pi_1 \end{aligned}$$

where $\epsilon \in \mathfrak{H}_2$ and $(\pi, \mathfrak{H}_1) \subset (\pi, \mathfrak{H} \cup \mathfrak{H}_1)$ is a Null hypersoft set, implies $(\pi_2, \mathfrak{H}_2) = (\pi, \mathfrak{H} \cup \mathfrak{H}_1)$ is a bijective hypersoft expert set over \mathfrak{Z} .

Definition 11. Suppose $\mathfrak{Z}_1 \subset \mathfrak{Z}$ and (π, \mathfrak{H}) is a BHSES. The restricted AND operation is written as $(\pi, \mathfrak{H}) \bigwedge_{\mathcal{R}} \mathfrak{Z}_1$, and is described as

$$\underset{\varpi \in \mathfrak{H}}{\cup} \{\pi(\varpi) : \pi(\varpi) \subseteq \mathfrak{Z}_1\}.$$

Example 3.5. Suppose $\mathfrak{Z} = \{F_1, F_2, F_3,, F_6\}$ and $\mathfrak{Z}_1 = \{F_1, F_2, F_3, \}$. If $(\pi, \mathfrak{H}) \in \Upsilon_{BHSES}$ with

$$(\pi, \mathfrak{H}) = \{ (\varpi_1, \{F_1, F_2\}), (\varpi_2, \{F_3\}), (\varpi_3, \{F_5, F_6\}) \}$$

then

$$(\pi, \mathfrak{H}) \bigwedge_{\mathcal{R}} \mathfrak{Z}_1 = \{F_1, F_2\} \cup \{F_3\} = \{F_1, F_2, F_3\}$$

Definition 12. Suppose $\mathfrak{Z}_1 \subset \mathfrak{Z}$ and (π, \mathfrak{H}) are BHSES. The relaxed AND operation is written as

$$\underset{\varpi \in \mathfrak{H}}{\cup} \{\pi(\varpi) : \pi(\varpi) \cap \mathfrak{Z}_1 \neq \emptyset\}.$$

and it is represented by $(\pi, \mathfrak{H}) \bigwedge_{\mathcal{R}el} \mathfrak{Z}_1$.

Example 3.6. Let $\mathfrak{Z} = \{F_1, F_2, F_3,, F_6\}$ and $\mathfrak{Z}_1 = \{F_1, F_2, F_3\}$. Suppose (π, \mathfrak{H}) is a BHSES with

$$\left(\pi,\mathfrak{H}\right)=\left\{ \ \left(\varpi_{1},\left\{\digamma_{1},\digamma_{6}\right\}\right),\left(\varpi_{2},\left\{\digamma_{3},\digamma_{5}\right\}\right),\left(\varpi_{3},\left\{\digamma_{2},\digamma_{4}\right\}\right),\ \right\}$$

then

$$(\pi, \mathfrak{H}) \bigwedge_{\mathcal{R}el} \mathfrak{Z}_1 = \{ \mathcal{F}_1, \mathcal{F}_6 \} \cup \{ \mathcal{F}_3, \mathcal{F}_5 \} \cup \{ \mathcal{F}_2, \mathcal{F}_4 \} = \{ \mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3, \mathcal{F}_4, \mathcal{F}_5, \mathcal{F}_6 \} = \mathfrak{Z}_1 \cup \{ \mathcal{F}_3, \mathcal{F}_6 \} \cup \{ \mathcal{F}_6 \} \cup \{ \mathcal{F}_6, \mathcal{F}_6 \} \cup \{ \mathcal{F}_$$

Definition 13. Suppose (π, \mathfrak{H}) is a BHSES, a boundary region of BHSES w.r.t $\mathfrak{Z}_1 \subset \mathfrak{Z}$, written by $(\pi, \mathfrak{H})_{\bullet}$, is presented as

$$(\pi, \mathfrak{H})_{ullet} = \left((\pi, \mathfrak{H}) \bigwedge_{\mathcal{R}el} \mathfrak{Z}_1 \right) \setminus \left((\pi, \mathfrak{H}) \bigwedge_{\mathcal{R}} \mathfrak{Z}_1 \right)$$

Example 3.7. Taking 3.6 for \mathfrak{Z} and \mathfrak{Z}_1 , we have

$$(\pi, \mathfrak{H}) = \{ (\varpi_1, \{F_1, F_6\}), (\varpi_2, \{F_3, F_5\}), (\varpi_3, \{F_2, F_4\}) \}$$

. Now

$$(\pi, \mathfrak{H}) \bigwedge_{\mathcal{R}el} \mathfrak{Z}_1 = \{F_1, F_6\} \cup \{F_3, F_5\} \cup \{F_2, F_4\} = \{F_1, F_2, F_3, F_4, F_5F_6\}$$

and

$$(\pi, \mathfrak{H}) \bigwedge_{\mathcal{R}} \mathfrak{Z}_1 = \{F_1, F_6\} \cup \{F_3, F_5\} = \{F_1, F_3, F_5, F_6\}$$

therefore

$$(\pi, \mathfrak{H})_{\bullet} = \{ \mathcal{F}_2, \mathcal{F}_6 \}$$

Definition 14. Suppose (π_1, \mathfrak{H}_1) and (π_2, \mathfrak{H}_2) are two BHSES with $\mathfrak{H}_1 \cap \mathfrak{H}_2 = \emptyset$, then (π_1, \mathfrak{H}_1) is said to depend on (π_2, \mathfrak{H}_2) with degree $\chi \in [0, 1]$, shown by $(\pi_1, \mathfrak{H}_1) \underset{\chi}{\Rightarrow} (\pi_2, \mathfrak{H}_2)$, if

$$\chi = \Im((\pi_1, \mathfrak{H}_1), (\pi_2, \mathfrak{H}_2)) = \frac{\left| \bigcup_{\varpi \in \mathfrak{H}_2} \{(\pi_1, \mathfrak{H}_1) \bigwedge_{\mathcal{R}} \pi_2(\varpi)\} \right|}{|\mathfrak{Z}|}$$

such that $|\cdot|=$ shows the cardinality of a set.

Note:

- (i) If $\chi = 1$ so (π_1, \mathfrak{H}_1) is full depended on (π_2, \mathfrak{H}_2) .
- (ii) If $\chi = 0$ so (π_1, \mathfrak{H}_1) is not depended on (π_2, \mathfrak{H}_2) .

Example 3.8. Taking 3.6 for 3, we have

$$(\pi_{1}, \mathfrak{H}_{1}) = \left\{ \begin{array}{l} (\varpi_{1}, \{F_{1}\}), (\varpi_{2}, \{F_{3}\}), (\varpi_{3}, \{F_{6}\}), \\ (\varpi_{4}, \{F_{5}\}), (\varpi_{5}, \{F_{2}\}), (\varpi_{6}, \{F_{4}\}) \end{array} \right\}$$

and

$$(\pi_2, \mathfrak{H}_2) = \left\{ (\varpi_7, \{F_1, F_2\}), (\varpi_8, \{F_3, F_4\}), (\varpi_9, \{F_5, F_6\}) \right\}$$

Now

$$(\pi_1, \mathfrak{H}_1) \bigwedge_{\mathcal{R}} \pi_2(\varpi_7) = \{F_1\} \cup \{F_2\} = \{F_1, F_2\}$$
$$(\pi_1, \mathfrak{H}_1) \bigwedge_{\mathcal{R}} \pi_2(\varpi_8) = \{F_3\} \cup \{F_4\} = \{F_3, F_4\}$$
$$(\pi_1, \mathfrak{H}_1) \bigwedge_{\mathcal{R}} \pi_2(\varpi_9) = \{F_5\}$$

therefore

$$\underset{\varpi \in \mathfrak{H}_2}{\cup} \{(\pi_1, \mathfrak{H}_1) \bigwedge_{\mathcal{R}} \pi_2(\varpi)\} = \{\digamma_1, \digamma_2, \digamma_3, \digamma_4, \digamma_5, \}$$

with

$$\chi = \frac{5}{6} = 0.833$$

Definition 15. Suppose (π, \mathfrak{H}) and $(\mathfrak{L}, \mathfrak{S})$ are two BHSESs. This $((\pi, \mathfrak{H}), (\mathfrak{L}, \mathfrak{S}), \mathfrak{H})$ is named as BHSES decision system over 3, shown by \mathfrak{D}_{BHE} , if

(i)
$$\exists$$
 a property HSES $(\pi, \mathfrak{H}) = \bigcup_{i=1}^{n} (\pi_i, \mathfrak{H}_i) \ \forall \ (\pi_i, \mathfrak{H}_i) \in \Upsilon_{BHSES}$ with $\mathfrak{H}_i \cap \mathfrak{H}_j = \emptyset, \ i \neq j$

(ii) \exists a decision HSES $(\mathfrak{L}, \mathfrak{S})$ for which $\mathfrak{S} \cap \mathfrak{H}_i = \emptyset$.

Example 3.9. Consider 3.6 for 3, we have

$$(\pi_{1}, \mathfrak{H}_{1}) = \left\{ (\varpi_{1}, \{F_{1}\}), (\varpi_{2}, \{F_{2}\}), (\varpi_{3}, \{F_{3}\}) \right\}$$

$$(\pi_{2}, \mathfrak{H}_{2}) = \left\{ (\varpi_{4}, \{F_{1}, F_{3}\}), (\varpi_{5}, \{F_{2}, F_{5}\}), (\varpi_{6}, \{F_{4}, F_{6}\}) \right\}$$

$$(\pi_{3}, \mathfrak{H}_{3}) = \left\{ (\varpi_{7}, \{F_{1}, F_{2}, F_{4}\}), (\varpi_{8}, \{F_{3}, F_{5}, F_{6}\}) \right\}$$

and

$$\left(\mathfrak{L},\mathfrak{S}\right)=\left\{ \begin{array}{ll} \left(\varpi_{10},\left\{\digamma_{1},\digamma_{3},\digamma_{5}\right\}\right),\left(\varpi_{11},\left\{\digamma_{2},\digamma_{4}\right\}\right),\left(\varpi_{12},\left\{\digamma_{6}\right\}\right) \end{array} \right\}$$

therefore

$$\mathfrak{D}_{BHE} = (igcup_{i=1}^3(\pi_i,\mathfrak{H}_i),(\mathfrak{X},\mathfrak{S}),\mathfrak{Z})$$

Definition 16. The BHSE dependency between $(\pi_1, \mathfrak{H}_1) \wedge (\pi_2, \mathfrak{H}_2) \wedge \wedge (\pi_m, \mathfrak{H}_m)$ and $(\mathfrak{X},\mathfrak{S})$ is called BHSE decision system dependency of \mathfrak{D}_{BHE} and represented by

$$\chi = \exists \left(\bigwedge_{i=1}^{m} (\pi_i, \mathfrak{H}_i), (\mathfrak{X}, \mathfrak{S}) \right).$$

Example 3.10. Considering the 3 from Example 3.6, Let we have

$$(\pi_{1},\mathfrak{H}_{1}) = \left\{ \begin{array}{l} (\varpi_{1}, \{F_{1}, F_{4}, F_{6}\}), (\varpi_{2}, \{F_{2}, F_{5}\}) \end{array} \right\} \\ (\pi_{2},\mathfrak{H}_{2}) = \left\{ \begin{array}{l} (\varpi_{3}, \{F_{1}, F_{5}, F_{6}\}), (\varpi_{4}, \{F_{4}\}) \end{array} \right\} \\ (\pi_{3},\mathfrak{H}_{3}) = \left\{ \begin{array}{l} (\varpi_{5}, \{F_{1}, F_{2}, F_{4}\}), (\varpi_{6}, \{F_{3}, F_{5}, F_{6}\}) \end{array} \right\} \\ (\mathfrak{X},\mathfrak{S}) = \left\{ \begin{array}{l} (\varpi_{7}, \{F_{1}, F_{4}, F_{5}, F_{6}\}), (\varpi_{8}, \{F_{2}, F_{3}\}) \end{array} \right\}$$

then

$$(\pi, \mathfrak{H}) = (\pi_1, \mathfrak{H}_1) \bigwedge (\pi_2, \mathfrak{H}_2) \bigwedge (\pi_3, \mathfrak{H}_3) =$$

$$\begin{cases}
(\varepsilon_{1} = (\varpi_{1}, \varpi_{3}, \varpi_{5}), \{F_{1}\}), (\varepsilon_{2} = (\varpi_{1}, \varpi_{3}, \varpi_{6}), \{F_{6}\}), (\varepsilon_{3} = (\varpi_{1}, \varpi_{3}, \varpi_{7}), \{F_{1}, F_{6}\}) \\
(\varepsilon_{4} = (\varpi_{1}, \varpi_{4}, \varpi_{5}), \{F_{4}\}), (\varepsilon_{5} = (\varpi_{1}, \varpi_{4}, \varpi_{6}), \emptyset), (\varepsilon_{6} = (\varpi_{1}, \varpi_{4}, \varpi_{7}), \{F_{4}\}) \\
(\varepsilon_{7} = (\varpi_{2}, \varpi_{3}, \varpi_{5}), \emptyset), (\varepsilon_{8} = (\varpi_{2}, \varpi_{3}, \varpi_{6}), \{F_{5}\}), (\varepsilon_{9} = (\varpi_{2}, \varpi_{3}, \varpi_{7}), \{F_{4}\}) \\
(\varepsilon_{10} = (\varpi_{2}, \varpi_{4}, \varpi_{5}), \emptyset), (\varepsilon_{11} = (\varpi_{2}, \varpi_{4}, \varpi_{6}), \emptyset), (\varepsilon_{12} = (\varpi_{2}, \varpi_{4}, \varpi_{7}), \emptyset) \\
(\varepsilon_{13} = (\varpi_{2}, \varpi_{4}, \varpi_{8}), \emptyset), (\varepsilon_{14} = (\varpi_{1}, \varpi_{3}, \varpi_{8}), \emptyset) \\
(\varepsilon_{15} = (\varpi_{1}, \varpi_{4}, \varpi_{8}), \emptyset), (\varepsilon_{16} = (\varpi_{2}, \varpi_{3}, \varpi_{8}), \emptyset)
\end{cases}$$
The takk of $((\varepsilon_{1}, \varepsilon_{1}), (\varepsilon_{1}, \varepsilon_{$

The tabular form of $(\pi_1, \mathfrak{H}_1) \wedge (\pi_2, \mathfrak{H}_2) \wedge (\pi_3, \mathfrak{H}_3)$ is shown in TABLE 3.

$$\begin{pmatrix} \bigwedge_{i=1}^{3} (\pi_{i}, \mathfrak{H}_{i}) \bigwedge_{\mathcal{R}} (\mathfrak{X}, \mathfrak{S}) \end{pmatrix} = \{F_{1}, F_{4}, F_{5}, F_{6}\}$$
therefore
$$\chi = \mathbb{k} \begin{pmatrix} \bigwedge_{i=1}^{3} (\pi_{i}, \mathfrak{H}_{i}), (\mathfrak{X}, \mathfrak{S}) \end{pmatrix} = \frac{4}{6} = 0.666$$

$$\chi = \Im\left(\bigwedge_{i=1}^{3} (\pi_i, \mathfrak{H}_i), (\mathfrak{X}, \mathfrak{S})\right) = \frac{4}{6} = 0.666$$

	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆
$\pi(\varepsilon_1)$	\oplus	$\widehat{\otimes}$	$\widehat{\otimes}$	$\hat{\otimes}$	$\widehat{\otimes}$	$\widehat{\otimes}$
$\pi(\varepsilon_2)$	$\widehat{\otimes}$	$\widehat{\otimes}$	$\widehat{\otimes}$	$\widehat{\otimes}$	$\widehat{\otimes}$	\oplus
$\pi(\varepsilon_3)$	\oplus	$\widehat{\otimes}$	$\widehat{\otimes}$	$\widehat{\otimes}$	$\widehat{\otimes}$	\oplus
$\pi(\varepsilon_4)$	$\widehat{\otimes}$	$\widehat{\otimes}$	$\widehat{\otimes}$	\oplus	$\widehat{\otimes}$	$\widehat{\otimes}$
$\pi(\varepsilon_5)$	$\widehat{\otimes}$	$\widehat{\otimes}$	$\widehat{\otimes}$	$\widehat{\otimes}$	$\widehat{\otimes}$	$\widehat{\otimes}$
$\pi(\varepsilon_6)$	$\widehat{\otimes}$	$\widehat{\otimes}$	$\widehat{\otimes}$	\oplus	$\widehat{\otimes}$	$\widehat{\otimes}$
$\pi(\varepsilon_7)$	$\widehat{\otimes}$	$\widehat{\otimes}$	$\widehat{\otimes}$	$\widehat{\otimes}$	$\widehat{\otimes}$	$\widehat{\otimes}$
$\pi(\varepsilon_8)$	$\widehat{\otimes}$	$\widehat{\otimes}$	$\widehat{\otimes}$	$\widehat{\otimes}$	\oplus	$\widehat{\otimes}$
$\pi(\varepsilon_9)$	$\widehat{\otimes}$	$\widehat{\otimes}$	$\widehat{\otimes}$	\oplus	$\widehat{\otimes}$	$\widehat{\otimes}$
$\pi(\varepsilon_{10})$	$\widehat{\otimes}$	$\widehat{\otimes}$	$\widehat{\otimes}$	$\widehat{\otimes}$	$\widehat{\otimes}$	$\widehat{\otimes}$
$\pi(\varepsilon_{11})$	$\widehat{\otimes}$	$\widehat{\otimes}$	$\widehat{\otimes}$	$\widehat{\otimes}$	$\widehat{\otimes}$	$\widehat{\otimes}$
$\pi(\varepsilon_{12})$	$\widehat{\otimes}$	$\widehat{\otimes}$	$\widehat{\otimes}$	$\widehat{\otimes}$	$\widehat{\otimes}$	$\widehat{\otimes}$

TABLE 3. $(\pi_1, \mathfrak{H}_1) \wedge (\pi_2, \mathfrak{H}_2) \wedge (\pi_3, \mathfrak{H}_3)$ in table form

Theorem 3.11. Suppose
$$\mathfrak{D}_{BHE} = ((\pi, \mathfrak{H}), (\mathfrak{X}, \mathfrak{S}), \mathfrak{Z})$$
, where $(\pi, \mathfrak{H}) = \bigcup_{i=1}^{n} (\pi_i, \mathfrak{H}_i)$ and $(\pi_i, \mathfrak{H}_i) \in \Upsilon_{BHSES}$. If $\chi = \exists \left(\bigwedge_{i=1}^{n} (\pi_i, \mathfrak{H}_i), (\mathfrak{X}, \mathfrak{S})\right)$ and $\chi_1 = \exists \left(\bigwedge_{i=1}^{m} (\pi_i, \mathfrak{H}_i), (\mathfrak{X}, \mathfrak{S})\right)$ with $m \leq n$ then $\chi_1 \leq \chi$.

Proof. Suppose that $(\mathfrak{P},\mathfrak{C}) = \bigwedge_{i=1}^n (\pi_i,\mathfrak{H}_i), (\mathfrak{J},\mathcal{K}) = \bigwedge_{i=1}^m (\pi_i,\mathfrak{H}_i)$ then we have

$$\chi = \Im \left(\bigwedge_{i=1}^{n} (\pi_i, \mathfrak{H}_i), (\mathfrak{X}, \mathfrak{S}) \right) = \frac{\left| \bigcup\limits_{\varepsilon \in \mathfrak{S}} (\mathfrak{P}, \mathfrak{C}) \bigwedge_{\mathcal{R}} \mathfrak{X}(\varepsilon) \right|}{|\mathfrak{Z}|} = \frac{\left| \bigcup\limits_{\varepsilon \in \mathfrak{S}} \bigcup\limits_{\lambda \in \mathfrak{C}} \{\mathfrak{P}(\lambda) : \mathfrak{P}(\lambda) \subseteq \mathfrak{X}(\varepsilon) \} \right|}{|\mathfrak{Z}|}$$

$$\chi_1 = \Im\left(\bigwedge_{i=1}^m (\pi_i, \mathfrak{H}_i), (\mathfrak{X}, \mathfrak{S})\right) = \frac{\left|\bigcup_{\varepsilon \in \mathfrak{S}} (\mathfrak{J}, \mathcal{K}) \bigwedge_{\mathcal{R}} \mathfrak{X}(\varepsilon)\right|}{|\mathfrak{Z}|} = \frac{\left|\bigcup_{\varepsilon \in \mathfrak{S}} \bigcup_{\lambda \in \mathcal{K}} \{\mathfrak{J}(\lambda) : \mathfrak{J}(\lambda) \subseteq \mathfrak{X}(\varepsilon)\}\right|}{|\mathfrak{Z}|}.$$

From Definition 2.6,

$$\mathfrak{P}(\varepsilon_1,\phi_2,..,\phi_n) = \pi_1(\phi_1) \cap \pi_2(\phi_2) \cap \cdots \cap \pi_m(\phi_m) \cap \cdots \cap \pi_n(\phi_n), \forall (\phi_1,\phi_2,..,\phi_n) \in \mathfrak{H}_1 \times \mathfrak{H}_2 \times \cdots \times \mathfrak{H}_n$$

$$\mathfrak{J}(\phi_1,\phi_2,..,\phi_m) = \pi_1(\phi_1) \cap \pi_2(\phi_2) \cap \cdots \cap \pi_m(\phi_m), \ \forall (\phi_1,\phi_2,..,\phi_m) \in \mathfrak{H}_1 \times \mathfrak{H}_2 \times \cdots \times \mathfrak{H}_m$$

$$n > m$$

$$\mathfrak{P}(\phi_1,\phi_2,..,\phi_n) \supseteq \mathfrak{J}(\phi_1,\phi_2,..,\phi_m)$$

and

$$\bigcup_{\phi \in \mathfrak{C}} \mathfrak{P}(\phi) = \mathfrak{Z}, \bigcup_{\phi \in \mathcal{K}} \mathfrak{J}(\phi) = \mathfrak{Z}.$$

Therefore,

$$\left| \bigcup_{\phi \in \mathfrak{C}} \{ \mathfrak{P}(\phi) : \mathfrak{P}(\phi) \subseteq \mathfrak{S}(\phi) \} \right| \ge \left| \bigcup_{\phi \in \mathcal{K}} \{ \mathfrak{J}(\phi) : \mathfrak{J}(\phi) \subseteq \mathfrak{S}(\phi) \} \right|.$$

$$\left| \bigcap_{i=1}^{m} (\pi_i, \mathfrak{H}_i), (\mathfrak{X}, \mathfrak{S}) \right| \le \chi.$$

Definition 17. Suppose $\mathfrak{D}_{BHE} = ((\pi, \mathfrak{H}), (\mathfrak{X}, \mathfrak{S}), \mathfrak{Z})$, where $(\pi, \mathfrak{H}) = \bigcup_{i=1}^{n} (\pi_i, \mathfrak{H}_i)$ and $\bigcup_{i=1}^{m} (\pi_i, \mathfrak{H}_i) \subset (\pi, \mathfrak{H})$. If $\exists \left(\bigwedge_{i=1}^{n} (\pi_i, \mathfrak{H}_i), (\mathfrak{X}, \mathfrak{S}) \right) = \exists \left(\bigwedge_{i=1}^{m} (\pi_i, \mathfrak{H}_i), (\mathfrak{X}, \mathfrak{S}) \right) = \chi$ then $\bigcup_{i=1}^{m} (\pi_i, \mathfrak{H}_i)$ is named as a reduct of \mathfrak{D}_{BHE} .

Example 3.12. Using 3.6 for 3 and 3.10 for sets, we see

$$(\pi_{1}, \mathfrak{H}_{1}) = \left\{ (\varpi_{1}, \{F_{1}, F_{4}, F_{6}\}), (\varpi_{2}, \{F_{2}, F_{5}\}) \right\}$$

$$(\pi_{2}, \mathfrak{H}_{2}) = \left\{ (\varpi_{3}, \{F_{1}, F_{5}, F_{6}\}), (\varpi_{4}, \{F_{4}\}) \right\}$$

$$(\pi_{3}, \mathfrak{H}_{3}) = \left\{ (\varpi_{5}, \{F_{1}, F_{2}, F_{4}\}), (\varpi_{6}, \{F_{3}, F_{5}, F_{6}\}) \right\}$$

$$(\mathfrak{X}, \mathfrak{S}) = \left\{ (\varpi_{7}, \{F_{1}, F_{4}, F_{5}, F_{6}\}), (\varpi_{8}, \{F_{2}, F_{3}\}) \right\}$$

then

$$(\pi_{1}, \mathfrak{H}_{1}) \bigwedge (\pi_{2}, \mathfrak{H}_{2}) = \left\{ \begin{array}{l} (\phi_{1} = (\varpi_{1}, \varpi_{3}), \{F_{1}, F_{6}\}), (\phi_{2} = (\varpi_{1}, \varpi_{4}), \{F_{4}\}), \\ (\phi_{3} = (\varpi_{2}, \varpi_{3}), \{F_{5}\}) (\phi_{4} = (\varpi_{2}, \varpi_{4}), \emptyset) \end{array} \right\}.$$

Now

$$\left(\bigwedge_{i=1}^{2} (\pi_{i}, \mathfrak{H}_{i}) \bigwedge_{\mathcal{R}} (\mathfrak{X}, \mathfrak{S})\right) = \{F_{1}, F_{4}, F_{5}, F_{6}\}$$

therefore

Therefore
$$\chi = \Im\left(\bigwedge_{i=1}^{2} (\pi_{i}, \mathfrak{H}_{i}), (\mathfrak{X}, \mathfrak{S})\right) = \frac{4}{6} = 0.666 \text{ which is similar to } \Im\left(\bigwedge_{i=1}^{3} (\pi_{i}, \mathfrak{H}_{i}), (\mathfrak{X}, \mathfrak{S})\right)$$
 measured in Example 3.10. So $(\pi_{1}, \mathfrak{H}_{1}) \cup (\pi_{2}, \mathfrak{H}_{2})$ is a reduct of \mathfrak{D}_{BHE} .

Definition 18. Suppose $\mathfrak{D}_{BHE} = (\bigcup_{i=1}^{n} (\pi_i, \mathfrak{H}_i), (\mathfrak{X}, \mathfrak{S}), \mathfrak{Z})$. The significance of BHSES to decision HSES, shown $\varpi((\pi_j, \mathfrak{H}_j), \bigcup_{i=1}^{n} (\pi_i, \mathfrak{H}_i), (\mathfrak{X}, \mathcal{G}))$, is presented as

$$\varpi((\pi_j,\mathfrak{H}_j), \bigcup_{i=1}^n (\pi_i,\mathfrak{H}_i), (\mathfrak{X},\mathfrak{S})) = \chi - \exists ((\mathfrak{P},\mathfrak{C}), (\mathfrak{X},\mathfrak{S})),$$

where $(\mathfrak{P},\mathfrak{C}) = \bigwedge_{i=1}^n (\pi_i,\mathfrak{H}_i) (i \neq j)$.

Example 3.13. Taking 3.10, we have

$$\chi = \Im\left(\bigwedge_{i=1}^{3} (\pi_i, \mathfrak{H}_i), (\mathfrak{X}, \mathfrak{S})\right) = \frac{4}{6} = 0.666$$
 and

$$(\pi_2, \mathfrak{H}_2) \bigwedge (\pi_3, \mathfrak{H}_3) = \left\{ \begin{array}{l} (\phi_1 = (\varpi_3, \varpi_5), \{F_1\}), (\phi_2 = (\varpi_3, \varpi_6), \{F_5, F_6\}), \\ (\phi_4 = (\varpi_4, \varpi_5), \{F_4\}), (\phi_5 = (\varpi_4, \varpi_6), \{\}) \end{array} \right\}$$

$$\begin{split} & \underset{i=2}{\text{Now}} \\ & \left(\bigwedge_{i=2}^{3} (\pi_i, \mathfrak{H}_i) \bigwedge_{\mathcal{R}} (\mathfrak{X}, \mathfrak{S}) \right) = \{ F_1, F_4, F_5, F_6 \} \\ & \text{therefore} \\ & \exists \left(\bigwedge_{i=2}^{3} (\pi_i, \mathfrak{H}_i), (\mathfrak{X}, \mathfrak{S}) \right) = \frac{4}{6} = 0.666 \text{ hence} \\ & \varpi((\pi_1, \mathfrak{H}_1), \bigvee_{i=1}^{\sim 3} (\pi_i, \mathfrak{H}_i), (\mathfrak{X}, \mathfrak{S})) = \chi - \exists \left(\bigwedge_{i=2}^{3} (\pi_i, \mathfrak{H}_i), (\mathfrak{X}, \mathfrak{S}) \right) = 0.666 - 0.666 = 0 \end{split}$$

Definition 19. A BHSES $(\mathfrak{P},\mathfrak{C})$ is named as a core BHSES of \mathfrak{D}_{BHE} when it \in reduct of \mathfrak{D}_{BHE} .

Definition 20. Suppose $\mathfrak{D}_{BHE} = ((\pi, \mathfrak{H}), (\mathfrak{X}, \mathfrak{S}), \mathfrak{Z})$, where $(\pi, \mathfrak{H}) = \bigcup_{i=1}^{n} (\pi_i, \mathfrak{H}_i)$ and $\bigcup_{i=1}^{m} (\pi_i, \mathfrak{H}_i) \subset (\pi, \mathfrak{H})$ is a reduct of \mathfrak{D}_{BHE} . Let $(\mathfrak{P}, \mathfrak{C}) = \bigwedge_{i=1}^{m} (\pi_i, \mathfrak{H}_i)$. We say

if
$$e_i$$
, then $e_j \left(\frac{|\mathfrak{P}(e_i)|}{|\mathfrak{X}(e_j)|} \right)$

a decision rule induced by $\bigcup_{i=1}^{m} (\pi_i, \mathfrak{H}_i)$ where $e_i \in \mathfrak{C}$, $\mathfrak{X}(e_j) \supseteq \mathfrak{P}(e_i)$, $e_j \in \mathfrak{S}$ and $\frac{|\mathfrak{P}(e_i)|}{|\mathfrak{X}(e_j)|}$ presents the coverage proportion rule.

Example 3.14. Taking 3.12, we have

$$(\pi_1, \mathfrak{H}_1) \bigwedge (\pi_2, \mathfrak{H}_2) = \left\{ \begin{array}{l} (\phi_1 = (\varpi_1, \varpi_3), \{ \digamma_1, \digamma_6 \}), (\phi_2 = (\varpi_1, \varpi_4), \{ \digamma_4 \}), \\ (\phi_3 = (\varpi_2, \varpi_3), \{ \digamma_5 \}) (\phi_4 = (\varpi_2, \varpi_4), \emptyset) \end{array} \right\}.$$

Now

- (i) If ϕ_1 then $\varpi_7(2/4)$
- (ii) If ϕ_2 then $\varpi_7(1/4)$
- (iii) If ϕ_3 then $\varpi_7(1/4)$
- (iv) If ϕ_4 then $\varpi_7(0/4)$

4. An application of Bijective Hypersoft Expert set

This section presents an application of bijective hypersoft expert set to describe the decision rules.

Example 4.1. Suppose that one of the immediate selling organizations wishes to assess eight products from a producer and pick the most appropriate product for it to advertise. Let there are eight products which form the universe of discourse $Q = \{o_1, o_2, ..., o_8\}$ with expert set $P = \{p_1, p_2, p_3\}$. Let $E = \{w_1, w_2, w_3, w_4, w_5\}$ be the set of parameters which stand for

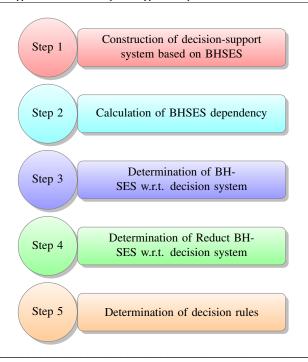
$$\begin{array}{l} w_1 = \text{Price} = & \{low = \tilde{\mathfrak{p}}_1, high = \tilde{\mathfrak{p}}_2\} \\ w_2 = & \text{Effectiveness} = & \{more = \tilde{\mathfrak{p}}_3, less = \tilde{\mathfrak{p}}_4\} \\ w_3 = & \text{Date of expire} = & \{ok = \tilde{\mathfrak{p}}_5, notok = \tilde{\mathfrak{p}}_6\} \\ w_4 = & \text{Utilization} = & \{more = \tilde{\mathfrak{p}}_7, less = \tilde{\mathfrak{p}}_8\} \\ w_5 = & \text{Quality} = & \{good = \tilde{\mathfrak{p}}_9, better = \tilde{\mathfrak{p}}_{10}\} \\ \text{and then} \end{array}$$

```
\tilde{\mathfrak{p}} = \tilde{\mathfrak{p}}_1 \times \tilde{\mathfrak{p}}_2 \times \tilde{\mathfrak{p}}_3 \times \tilde{\mathfrak{p}}_4 \times \tilde{\mathfrak{p}}_5
                                           (\tilde{\mathfrak{p}}_1,\tilde{\mathfrak{p}}_3,\tilde{\mathfrak{p}}_5,\tilde{\mathfrak{p}}_7,\tilde{\mathfrak{p}}_9),(\tilde{\mathfrak{p}}_1,\tilde{\mathfrak{p}}_3,\tilde{\mathfrak{p}}_5,\tilde{\mathfrak{p}}_7,\tilde{\mathfrak{p}}_{10}),(\tilde{\mathfrak{p}}_1,\tilde{\mathfrak{p}}_3,\tilde{\mathfrak{p}}_5,\tilde{\mathfrak{p}}_8,\tilde{\mathfrak{p}}_9),(\tilde{\mathfrak{p}}_1,\tilde{\mathfrak{p}}_3,\tilde{\mathfrak{p}}_5,\tilde{\mathfrak{p}}_8,\tilde{\mathfrak{p}}_{10}),(\tilde{\mathfrak{p}}_1,\tilde{\mathfrak{p}}_3,\tilde{\mathfrak{p}}_6,\tilde{\mathfrak{p}}_7,\tilde{\mathfrak{p}}_9),
                                           (\tilde{\mathfrak{p}}_1,\tilde{\mathfrak{p}}_3,\tilde{\mathfrak{p}}_6,\tilde{\mathfrak{p}}_7,\tilde{\mathfrak{p}}_{10}),(\tilde{\mathfrak{p}}_1,\tilde{\mathfrak{p}}_3,\tilde{\mathfrak{p}}_6,\tilde{\mathfrak{p}}_8,\tilde{\mathfrak{p}}_9),(\tilde{\mathfrak{p}}_1,\tilde{\mathfrak{p}}_3,\tilde{\mathfrak{p}}_6,\tilde{\mathfrak{p}}_8,\tilde{\mathfrak{p}}_{10}),(\tilde{\mathfrak{p}}_1,\tilde{\mathfrak{p}}_4,\tilde{\mathfrak{p}}_5,\tilde{\mathfrak{p}}_7,\tilde{\mathfrak{p}}_9),(\tilde{\mathfrak{p}}_1,\tilde{\mathfrak{p}}_4,\tilde{\mathfrak{p}}_5,\tilde{\mathfrak{p}}_7,\tilde{\mathfrak{p}}_{10}),
                                           (\tilde{\mathfrak{p}}_1,\tilde{\mathfrak{p}}_4,\tilde{\mathfrak{p}}_5,\tilde{\mathfrak{p}}_8,\tilde{\mathfrak{p}}_9),(\tilde{\mathfrak{p}}_1,\tilde{\mathfrak{p}}_4,\tilde{\mathfrak{p}}_5,\tilde{\mathfrak{p}}_8,\tilde{\mathfrak{p}}_{10}),(\tilde{\mathfrak{p}}_1,\tilde{\mathfrak{p}}_4,\tilde{\mathfrak{p}}_6,\tilde{\mathfrak{p}}_7,\tilde{\mathfrak{p}}_9),(\tilde{\mathfrak{p}}_1,\tilde{\mathfrak{p}}_4,\tilde{\mathfrak{p}}_6,\tilde{\mathfrak{p}}_7,\tilde{\mathfrak{p}}_{10}),(\tilde{\mathfrak{p}}_1,\tilde{\mathfrak{p}}_4,\tilde{\mathfrak{p}}_6,\tilde{\mathfrak{p}}_8,\tilde{\mathfrak{p}}_9),
                                           (\tilde{\mathfrak{p}}_{1},\tilde{\mathfrak{p}}_{4},\tilde{\mathfrak{p}}_{6},\tilde{\mathfrak{p}}_{8},\tilde{\mathfrak{p}}_{10}),(\tilde{\mathfrak{p}}_{2},\tilde{\mathfrak{p}}_{3},\tilde{\mathfrak{p}}_{5},\tilde{\mathfrak{p}}_{7},\tilde{\mathfrak{p}}_{9}),(\tilde{\mathfrak{p}}_{2},\tilde{\mathfrak{p}}_{3},\tilde{\mathfrak{p}}_{5},\tilde{\mathfrak{p}}_{7},\tilde{\mathfrak{p}}_{10}),(\tilde{\mathfrak{p}}_{2},\tilde{\mathfrak{p}}_{3},\tilde{\mathfrak{p}}_{5},\tilde{\mathfrak{p}}_{8},\tilde{\mathfrak{p}}_{9}),(\tilde{\mathfrak{p}}_{2},\tilde{\mathfrak{p}}_{3},\tilde{\mathfrak{p}}_{5},\tilde{\mathfrak{p}}_{8},\tilde{\mathfrak{p}}_{10}),
                                           (\tilde{\mathfrak{p}}_{2},\tilde{\mathfrak{p}}_{3},\tilde{\mathfrak{p}}_{6},\tilde{\mathfrak{p}}_{7},\tilde{\mathfrak{p}}_{9}),(\tilde{\mathfrak{p}}_{2},\tilde{\mathfrak{p}}_{3},\tilde{\mathfrak{p}}_{6},\tilde{\mathfrak{p}}_{7},\tilde{\mathfrak{p}}_{10}),(\tilde{\mathfrak{p}}_{2},\tilde{\mathfrak{p}}_{3},\tilde{\mathfrak{p}}_{6},\tilde{\mathfrak{p}}_{8},\tilde{\mathfrak{p}}_{9}),(\tilde{\mathfrak{p}}_{2},\tilde{\mathfrak{p}}_{3},\tilde{\mathfrak{p}}_{6},\tilde{\mathfrak{p}}_{8},\tilde{\mathfrak{p}}_{10}),(\tilde{\mathfrak{p}}_{2},\tilde{\mathfrak{p}}_{4},\tilde{\mathfrak{p}}_{5},\tilde{\mathfrak{p}}_{7},\tilde{\mathfrak{p}}_{9}),
                                           (\tilde{\mathfrak{p}}_{2}, \tilde{\mathfrak{p}}_{4}, \tilde{\mathfrak{p}}_{5}, \tilde{\mathfrak{p}}_{7}, \tilde{\mathfrak{p}}_{10}), (\tilde{\mathfrak{p}}_{2}, \tilde{\mathfrak{p}}_{4}, \tilde{\mathfrak{p}}_{5}, \tilde{\mathfrak{p}}_{8}, \tilde{\mathfrak{p}}_{9}), (\tilde{\mathfrak{p}}_{2}, \tilde{\mathfrak{p}}_{4}, \tilde{\mathfrak{p}}_{5}, \tilde{\mathfrak{p}}_{8}, \tilde{\mathfrak{p}}_{10}), (\tilde{\mathfrak{p}}_{2}, \tilde{\mathfrak{p}}_{4}, \tilde{\mathfrak{p}}_{6}, \tilde{\mathfrak{p}}_{7}, \tilde{\mathfrak{p}}_{9}), (\tilde{\mathfrak{p}}_{2}, \tilde{\mathfrak{p}}_{4}, \tilde{\mathfrak{p}}_{6}, \tilde{\mathfrak{p}}_{7}, \tilde{\mathfrak{p}}_{10}),
                                         (\tilde{\mathfrak{p}}_2, \tilde{\mathfrak{p}}_4, \tilde{\mathfrak{p}}_6, \tilde{\mathfrak{p}}_8, \tilde{\mathfrak{p}}_9), (\tilde{\mathfrak{p}}_2, \tilde{\mathfrak{p}}_4, \tilde{\mathfrak{p}}_6, \tilde{\mathfrak{p}}_8, \tilde{\mathfrak{p}}_{10})
and now take \mathfrak{K} \subseteq \mathfrak{L} as
\mathfrak{K} = \{\varpi_1 = (\tilde{\mathfrak{p}}_1, \tilde{\mathfrak{p}}_3, \tilde{\mathfrak{p}}_5, \tilde{\mathfrak{p}}_7, \tilde{\mathfrak{p}}_9), \varpi_2 = (\tilde{\mathfrak{p}}_1, \tilde{\mathfrak{p}}_3, \tilde{\mathfrak{p}}_6, \tilde{\mathfrak{p}}_7, \tilde{\mathfrak{p}}_{10}), \varpi_3 = (\tilde{\mathfrak{p}}_1, \tilde{\mathfrak{p}}_4, \tilde{\mathfrak{p}}_6, \tilde{\mathfrak{p}}_8, \tilde{\mathfrak{p}}_9), \varpi_4 = (\tilde{\mathfrak{p}}_1, \tilde{\mathfrak{p}}_2, \tilde{\mathfrak{p}}_3, \tilde{\mathfrak{p}}_6, \tilde{\mathfrak{p}}_7, \tilde{\mathfrak{p}}_{10}), \varpi_3 = (\tilde{\mathfrak{p}}_1, \tilde{\mathfrak{p}}_4, \tilde{\mathfrak{p}}_6, \tilde{\mathfrak{p}}_8, \tilde{\mathfrak{p}}_9), \varpi_4 = (\tilde{\mathfrak{p}}_1, \tilde{\mathfrak{p}}_2, \tilde{\mathfrak{p}}_3, \tilde{\mathfrak{p}}_6, \tilde{\mathfrak{p}}_7, \tilde{\mathfrak{p}}_8, \tilde{\mathfrak{p}}_9), \varpi_4 = (\tilde{\mathfrak{p}}_1, \tilde{\mathfrak{p}}_2, \tilde{\mathfrak{p}}_3, \tilde{\mathfrak{p}}_6, \tilde{\mathfrak{p}}_7, \tilde{\mathfrak{p}}_8, \tilde{\mathfrak{p}}_9), \varpi_4 = (\tilde{\mathfrak{p}}_1, \tilde{\mathfrak{p}}_2, \tilde{\mathfrak{p}}_3, \tilde{\mathfrak{p}}_6, \tilde{\mathfrak{p}}_7, \tilde{\mathfrak{p}}_8, \tilde{\mathfrak{p}}_9), \varpi_4 = (\tilde{\mathfrak{p}}_1, \tilde{\mathfrak{p}}_2, \tilde{\mathfrak{p}}_3, \tilde{\mathfrak{p}}_6, \tilde{\mathfrak{p}}_7, \tilde{\mathfrak{p}}_8, \tilde{\mathfrak{p}}_9), \varpi_4 = (\tilde{\mathfrak{p}}_1, \tilde{\mathfrak{p}}_2, \tilde{\mathfrak{p}}_3, \tilde{\mathfrak{p}}_8, \tilde{\mathfrak{p}}_9), \varpi_4 = (\tilde{\mathfrak{p}}_1, \tilde{\mathfrak{p}}_2, \tilde{\mathfrak{p}}_3, \tilde{\mathfrak{p}}_8, \tilde{\mathfrak{p}}_9), \varpi_4 = (\tilde{\mathfrak{p}}_1, \tilde{\mathfrak{p}}_3, \tilde{\mathfrak{p}}_4, \tilde{\mathfrak{p}}_8, \tilde{\mathfrak{p}}_9), \varpi_4 = (\tilde{\mathfrak{p}}_1, \tilde{\mathfrak{p}}_4, \tilde{\mathfrak{p}}_4, \tilde{\mathfrak{p}}_8, \tilde{\mathfrak{p}}_9), \varpi_4 = (\tilde{\mathfrak{p}}_1, \tilde{\mathfrak{p}}_4, \tilde{\mathfrak{p}}_8, \tilde{\mathfrak{p}}_9), \varpi_4 = (\tilde{\mathfrak{p}}_1, \tilde{\mathfrak{p}}_4, \tilde{\mathfrak{
(\tilde{\mathfrak{p}}_2, \tilde{\mathfrak{p}}_3, \tilde{\mathfrak{p}}_6, \tilde{\mathfrak{p}}_8, \tilde{\mathfrak{p}}_9), \varpi_5 = (\tilde{\mathfrak{p}}_2, \tilde{\mathfrak{p}}_4, \tilde{\mathfrak{p}}_6, \tilde{\mathfrak{p}}_7, \tilde{\mathfrak{p}}_{10})\}
                                                                      ((\varpi_1, P_1, 1), \{o_1, o_2, o_3\}), ((\varpi_1, P_2, 1), \{o_1, o_4, o_5, o_8\}),
                                                                      ((\varpi_1, P_3, 1), \{o_1, o_3, o_4, o_5, o_6, o_7, o_8\}), ((\varpi_2, P_1, 1), \{o_1, o_3, o_5, o_8\}),
                                                                      ((\varpi_2, P_2, 1), \{o_1, o_3, o_4, o_5, o_6, o_8\}), ((\varpi_2, P_3, 1), \{o_1, o_2, o_4, o_5, o_6, o_8\}),
                                                                      ((\varpi_3, P_1, 1), \{o_1, o_4, o_5, o_7\}), ((\varpi_3, P_2, 1), \{o_1, o_2, o_5, o_8\}),
                                                                      ((\varpi_3, P_3, 1), \{o_1, o_3, o_5, o_8\}), ((\varpi_4, P_1, 1), \{o_1, o_7, o_8\}),
                                                                      ((\varpi_4, P_2, 1), \{o_1, o_4, o_5, o_8\}), ((\varpi_4, P_3, 1), \{o_1, o_6, o_7, o_8\}),
                                                                     ((\varpi_5, P_1, 1), \{o_1, o_3, o_4, o_5, o_7, o_8\}), ((\varpi_5, P_2, 1), \{o_1, o_4, o_5, o_6, o_8\}),
                                                                    ((\varpi_5, P_3, 1), \{o_1, o_3, o_4, o_5, o_6, o_7, o_8\}), ((\varpi_1, P_1, 0), \{o_1, o_6, o_7, o_8\}),
                                                                    ((\varpi_1, P_2, 0), \{o_2, o_3, o_6, o_7, o_8\}), ((\varpi_1, P_3, 0), \{o_1, o_5\}),
                                                                      ((\varpi_2, P_1, 0), \{o_1, o_2, o_4, o_5, o_6\}), ((\varpi_2, P_2, 0)o_1, o_7\},
                                                                     ((\varpi_2, P_3, 0), \{o_1, o_3, o_4, o_5, o_6, o_7\}), ((\varpi_3, P_1, 0), \{o_1, o_2, o_6, o_8\}),
                                                                     ((\varpi_3, P_2, 0), \{o_3, o_4, o_6, o_7\}), ((\varpi_3, P_3, 0), \{o_1, o_3, o_4, o_5, o_7\}),
                                                                     ((\varpi_4, P_1, 0), \{o_1, o_2, o_3, o_4, o_5, o_7\}), ((\varpi_4, P_2, 0), \{o_2, o_3, o_6, o_7\}),
                                                                     ((\varpi_4, P_3, 0), \{o_1, o_3, o_4, o_5\}), ((\varpi_5, P_1, 0), \{o_1, o_6\}),
                                                         ((\varpi_5, P_2, 0), \{o_1, o_2, o_6, o_7\}), ((\varpi_5, P_3, 0), \{o_1, o_4, o_6\}),
```

is a hypersoft expert set.

Here an algorithm of bijective hypersoft expert sets is presented for the establishment of decision rules.

Proposed Algorithm for Optimal Selection of Surgical Mask



Step 1

suppose there are the following bijective hypersoft expert sets

$$\begin{split} (\mathcal{M}_1, \mathcal{N}_1) &= \left\{ \begin{array}{l} \left(\varpi_1, \{o_1, o_2, \}\right), \left(\varpi_2, \{o_1, o_3, o_8\}\right) \end{array} \right\} \\ (\mathcal{M}_2, \mathcal{N}_2) &= \left\{ \begin{array}{l} \left(\varpi_3, \{o_1, o_5, o_7\}\right), \left(\varpi_4, \{o_4, o_5, o_8\}\right) \end{array} \right\} \\ (\mathcal{M}_3, \mathcal{N}_3) &= \left\{ \begin{array}{l} \left(\varpi_5, \{o_1, o_2, o_7\}\right), \left(\varpi_6, \{o_3, o_6\}\right), \left(\varpi_7, \{o_6, o_7\}\right) \end{array} \right\} \\ (\mathfrak{X}, \Theta) &= \left\{ \begin{array}{l} \left(\varpi_8, \{o_1, o_4, o_5, o_6\}\right), \left(\varpi_9, \{o_2, o_3, o_7, o_8\}\right) \end{array} \right\} \end{split}$$

which form $\mathfrak{D}_{BHE} = (\bigcup_{i=1}^{3} (\mathcal{M}_i, \mathcal{N}_i), (\mathfrak{X}, \Theta), \mathfrak{Z})$ and $\mathcal{N}_i, \Theta \subseteq \mathbb{L}$.

Step 2

Since

$$(\mathcal{M}_1, \mathcal{N}_1) \bigwedge (\mathcal{M}_2, \mathcal{N}_2) = \left\{ \begin{array}{l} (\mathcal{F}_1 = (\varpi_1, \varpi_3), \{o_1\}), (\mathcal{F}_2 = (\varpi_1, \varpi_4), \{o_8\}), \\ (\mathcal{F}_3 = (\varpi_2, \varpi_3), \{o_1\}), (\mathcal{F}_4 = (\varpi_2, \varpi_4), \{o_8\}) \end{array} \right\}$$

and

$$(\mathcal{M}_2, \mathcal{N}_2) \bigwedge (\mathcal{M}_3, \mathcal{N}_3) = \left\{ \begin{array}{l} \left(\mathcal{F}_5 = (\varpi_3, \varpi_5), \{o_1, o_7\}\right), \left(\mathcal{F}_6 = (\varpi_3, \varpi_6), \emptyset\right), \left(\mathcal{F}_7 = (\varpi_3, \varpi_7), \{o_7\}\right) \\ \left(\mathcal{F}_8 = (\varpi_4, \varpi_5), \emptyset\right), \left(\mathcal{F}_9 = (\varpi_4, \varpi_6), \emptyset\right), \left(\mathcal{F}_{10} = (\varpi_4, \varpi_7), \emptyset\right) \end{array} \right\}$$

and

$$(\mathcal{M}_{1},\mathcal{N}_{1})\bigwedge(\mathcal{M}_{3},\mathcal{N}_{3}) = \left\{ \begin{array}{l} (\digamma_{11} = (\varpi_{1},\varpi_{5}),\{o_{1},o_{2}\}), (\digamma_{12} = (\varpi_{1},\varpi_{6}),\emptyset), (\digamma_{13} = (\varpi_{1},\varpi_{7}),\emptyset) \\ (\digamma_{14} = (\varpi_{2},\varpi_{5}),\{o_{1}\}), (\digamma_{15} = (\varpi_{2},\varpi_{6}),\{o_{3}\}), (\digamma_{16} = (\varpi_{2},\varpi_{7}),\{o_{4}\}) \end{array} \right\}$$

Now

$$\chi_1 = \exists ((\mathcal{M}_1, \mathcal{N}_1), (\mathfrak{X}, \Theta)) = \frac{4}{8} = 0.5$$

 $\chi_2 = \exists ((\mathcal{M}_2, \mathcal{N}_2), (\mathfrak{X}, \Theta)) = \frac{5}{8} = 0.625$

$$\chi_{3} = \Im((\mathcal{M}_{3}, \mathcal{N}_{3}), (\mathfrak{X}, \Theta)) = \frac{5}{8} = 0.625$$

$$\chi_{4} = \Im((\mathcal{M}_{1}, \mathcal{N}_{1}) \wedge (\mathcal{M}_{2}, \mathcal{N}_{2}), (\mathfrak{X}, \Theta)) = \frac{2}{8} = 0.5$$

$$\chi_{5} = \Im((\mathcal{M}_{2}, \mathcal{N}_{2}) \wedge (\mathcal{M}_{3}, \mathcal{N}_{3}), (\mathfrak{X}, \Theta)) = \frac{3}{8} = 0.375$$

$$\chi_{6} = \Im((\mathcal{M}_{1}, \mathcal{N}_{1}) \wedge (\mathcal{M}_{3}, \mathcal{N}_{3}), (\mathfrak{X}, \Theta)) = \frac{4}{8} = 0.5$$
Step 3
$$(\mathcal{M}_{1}, \mathcal{N}_{1}) \wedge (\mathcal{M}_{2}, \mathcal{N}_{2}) \wedge (\mathcal{M}_{3}, \mathcal{N}_{3}) =$$

$$\begin{cases}
(F_{1} = (\varpi_{1}, \varpi_{3}, \varpi_{5}), \{o_{1}\}), (F_{2} = (\varpi_{1}, \varpi_{3}, \varpi_{6}), \emptyset), (F_{3} = (\varpi_{1}, \varpi_{3}, \varpi_{7}), \emptyset) \\
(F_{4} = (\varpi_{1}, \varpi_{4}, \varpi_{5}), \emptyset), (F_{5} = (\varpi_{1}, \varpi_{4}, \varpi_{6}), \emptyset), (F_{6} = (\varpi_{1}, \varpi_{4}, \varpi_{7}), \emptyset) \\
(F_{7} = (\varpi_{2}, \varpi_{3}, \varpi_{5}), \{o_{1}\}), (F_{8} = (\varpi_{2}, \varpi_{3}, \varpi_{6}), \emptyset), (F_{9} = (\varpi_{2}, \varpi_{3}, \varpi_{7}), \{o_{3}\}) \\
(F_{10} = (\varpi_{2}, \varpi_{4}, \varpi_{5}), \emptyset), (F_{11} = (\varpi_{2}, \varpi_{4}, \varpi_{6}), \emptyset), (F_{12} = (\varpi_{2}, \varpi_{4}, \varpi_{7}), \emptyset) \\
\text{therefore}$$

$$\chi = \Im\left(\bigwedge_{i=1}^{3} (\mathcal{M}_{i}, \mathcal{N}_{i}), (\mathfrak{X}, \Theta)\right) = \frac{2}{8} = 0.5$$
Step 4

As
$$\Im\left((\mathcal{M}_{1}, \mathcal{N}_{1}) \wedge (\mathcal{M}_{2}, \mathcal{N}_{2}), (\mathfrak{X}, \Theta)\right) = 0.5 = \Im\left(\bigwedge_{i=1}^{3} (\mathcal{M}_{i}, \mathcal{N}_{i}), (\mathfrak{X}, \Theta)\right)$$

 $\exists \left((\mathcal{M}_1, \mathcal{N}_1) \bigwedge (\mathcal{M}_2, \mathcal{N}_2), (\mathfrak{X}, \Theta) \right) = 0.5 = \exists \left(\bigwedge_{i=1}^{3} (\mathcal{M}_i, \mathcal{N}_i), (\mathfrak{X}, \Theta) \right)$

therefore $(\mathcal{M}_1, \mathcal{N}_1) \cup (\mathcal{M}_2, \mathcal{N}_2)$ is a reduct of \mathfrak{D}_{BHE} .

Step 5

Since $(\mathcal{M}_1, \mathcal{N}_1) \cup (\mathcal{M}_2, \mathcal{N}_2)$ is a reduct of \mathfrak{D}_{BHE} so, decision rules w.r.t. \mathfrak{D}_{BHE}

- (i) If F_1 then $\varpi_8(1/4)$
- (ii) If F_2 then $\varpi_9(1/4)$
- (iii) If \digamma_3 then $\varpi_8(1/4)$
- (iv) If \digamma_4 then $\varpi_9(1/4)$

Here ϖ_8 and ϖ_9 have same values, so both are valuable for further evaluation.

4.2. Comparative study. In this subsection, we compare our proposed structure with the existing studies.

5. CONCLUSION

The paper is summarized as under

- (1) Axiomatic properties, set-theoretic operations and laws of bijective hypersoft expert set are conceptualized with the support of numerical illustrative examples.
- (2) A novel decision-support system is constructed with the help of some special type of aggregation operations like relaxed and restricted AND, dependency etc.
- (3) A decision-making based daily-life problem is discussed with the help of an algorithm based on aggregation of bijective hypersoft expert set.
- (4) The advantageous aspects of proposed study are judged through comparison with existing relevant models.

Following models may be developed by extending this study:

- Bijective fuzzy hypersoft expert set
- Bijective intuitionistic fuzzy hypersoft expert set
- Bijective Pythagorean fuzzy hypersoft expert set

TABLE 4. Comparison of proposed study with existing relevant models

Authors H. Kamacı et al. [13]	Structures Bijective soft matrix theory	Remarks • Single set of attributes is employed to develop decision system via bijection on matrix theory • Multi-bijective linguistic soft decision system is established
Gong et al. [27]	Bijective soft set	• Single set of attributes is employed to develop decision system
Rahman et al. [52]	Bijective hypersoft set	 Attributes are further classified into disjoint attribute-valued sets Decision system is developed via employment of multi-argument approximate functions.
Proposed structure	Bijective hy- persoft expert set	 Attributes are further classified into disjoint attribute-valued sets Decision system is developed via employment of multi-argument approximate functions Multi Decisive opinion is being used to get the required result.

- Bijective picture fuzzy hypersoft expert set
- Bijective neutrosophic hypersoft expert set and many other hybridized structures
 with their applications in decision-making, optimization and other fields of pure
 and applied mathematics.

REFERENCES

- [1] D. Molodtsov, Soft Set Theory First Results, Computers and Mathematics with Applications 37, (1999) 19-31.
- [2] P.K. Maji, R. Biswas, A.R. Roy, Soft Set Theory, Computers and Mathematics with Applications 45, (2003) 555-562.
- [3] D. Pei, D. Miao, From soft set to information system, In International Conference of Granular Computing, IEEE 2, (2005) 617-621.
- [4] M.I. Ali, F. Feng, X. Liu, W.K. Min, M. Sabir, *On some new operations in soft set theory*, Computers and Mathematics with Applications **57**, (2009) 1547-1553.
- [5] K.V. Babitha, J.J. Sunil, Soft set relations and functions, Computers and Mathematics with Applications 60, (2010) 1840-1849.
- [6] K.V. Babitha, J.J. Sunil, Transitive closure and ordering in soft set, Computers and Mathematics with Applications 61, (2011) 2235-2239.
- [7] A. Sezgin, A.O. Atagün, On operations of soft sets, Computers and Mathematics with Applications 61, No.5 (2011) 1457-1467.

- [8] X. Ge, S. Yang, Investigations on some operations of soft sets, World Academy of Science Engineering and Technology 75, (2011) 1113-1116.
- [9] F. Li, Notes on soft set operations, ARPN Journal of Systems and Software 1, No.6 (2011) 205-208.
- [10] M. Saeed, M. Hussain, A.A. Mughal, A Study of Soft Sets with Soft Members and Soft Elements: A New Approach, Punjab University Journal of Mathematics 52, No.8 (2020) 1-15.
- [11] A. U. Rahman, M. Saeed, M. Ihsan, M. Arshad, & S. Ayaz, *A conceptual framework of m-convex and m-concave sets under soft set environment with properties*, Transactions in Mathematical and Computational Sciences, 1, No. 1, (2021) pp. 5060.
- [12] A. U. Rahman, M. Saeed, M. Arshad, M. Ihsan, & M. R. Ahmad, (m, n)-convexity-concavity on fuzzy soft set with applications in first and second sense, Punjab University Journal of Mathematics, 53, No.1, (2021) pp19-33.
- [13] H. Kamacı, A.O. Atagün, E. Toktaş, Bijective soft matrix theory and multi-bijective linguistic soft decision system, Filomat 32, No.11 (2018) 3799-3814
- [14] H. Kamacı, A.O. Atagün, E. Aygün, Difference operations of soft matrices with applications in decision making, Punjab University Journal of Mathematics 51, No.3 (2019) 1-21.
- [15] H. Kamacı, Introduction to N-soft algebraic structures, Turkish Journal of Mathematics 44, No.6 (2020) 2356-2379.
- [16] H. Kamacı, S. Petchimuthu, Bipolar N-soft set theory with applications, Soft Computing 24, No.22 (2020) 16727-16743.
- [17] S. Petchimuthu, H. Kamacı, *The row-products of inverse soft matrices in multicriteria decision making*, Journal of Intelligent and Fuzzy Systems **36**, No. 6 (2019) 6425-6441.
- [18] A. Khalid, M. Abbas, *Distance measures and operations in intuitionistic and interval-valued intuitionistic fuzzy soft set theory*, International Journal of Fuzzy Systems 17, No.3 (2005) 490-497.
- [19] F. Feng, C. Li, B. Davvaz, M.I. Ali, Soft sets combined with fuzzy sets and rough sets: a tentative approach, Soft Computing 14, No.9 (2010) 899-911.
- [20] A.Z. Khameneh, A. Kilicman, Parameter reduction of fuzzy soft sets: An adjustable approach based on the three-way decision, International Journal of Fuzzy Systems 20, No.3 (2018) 928-942.
- [21] B. Paik, S.K. Mondal, A distance-similarity method to solve fuzzy sets and fuzzy soft sets based decision-making problems, Soft Computing 24, No.7 (2020) 5217-5229.
- [22] M. Akram, G. Ali, J.C.R. Alcantud, New decision-making hybrid model: intuitionistic fuzzy N-soft rough sets, Soft Computing 23, No.20 (2019) 9853-9868.
- [23] J. Zhang, X. Wu, R. Lu, Decision analysis methods combining quantitative logic and fuzzy soft sets, International Journal of Fuzzy Systems, No.6 (2020) 1801-1814.
- [24] F. Fatimah, D. Rosadi, R. F. Hakim, J. C. R. Alcantud, N-soft sets and their decision making algorithms, Soft Computing, 22, No. 12, (2018) 3829-3842.
- [25] M. Akram, A. Adeel, J. C. R. Alcantud, Fuzzy N-soft sets: A novel model with applications, Journal of Intelligent & Fuzzy Systems, 35, No. 4, (2018) 4757-4771.
- [26] M. Akram, A. Adeel, J. C. R. Alcantud, Group decision-making methods based on hesitant N-soft sets, Expert Systems with Applications, 115, (2019) 95-105.
- [27] K. Gong, X. Zhi, Z. Xia, The bijective soft set with its operations, Computers and Mathematics with Applications 60, No. 8 (2010) 2270-2278.
- [28] S. Alkhazaleh, A.R. Saleh, Soft expert sets, Advances in Decision Sciences 12, (2011).
- [29] M. Ihsan, M. Saeed, & A. U. Rahman, A rudimentary approach to develop context for convexity cum concavity on soft expert set with some generalized results, Punjab University Journal of Mathematics, 53, No.9, (2021) 621-629.
- [30] M. Ihsan, A. U. Rahman, M. Saeed & H. A. E. W. Khalifa, Convexity-cum-concavity on fuzzy soft expert set with certain properties, International Journal of Fuzzy Logic and Intelligent Systems, 21,No.3 (2021) 233-242.
- [31] F. Smarandache, Extension of soft set of hypersoft set, and then to plithogenic hypersoft set, Neutrosophic Sets and Systems 22, (2018) 168-170.
- [32] M. Saeed, M. Ahsan, M.K. Siddique, A.R. Ahmad, A study of the fundamentals of hypersoft set theory, International Journal of Scientific and Engineering Research 11, No.1 (2020) 320-329.
- [33] M. Saeed, A.U. Rahman, M. Ahsan, F. Smarandache, *An inclusive study on fundamentals of hypersoft set*, In Theory and Application of Hypersoft Set, Pons Publishing House, Brussels, (2021) 1-23.

- [34] A.U. Rahman, M. Saeed, F. Smarandache, M.R. Ahmad, Development of hybrids of hypersoft set with complex fuzzy set, complex intuitionistic fuzzy set and complex neutrosophic set, Neutrosophic Sets and Systems 38, (2020) 335-354.
- [35] A.U. Rahman, M. Saeed, F. Smarandache, Convex and concave hypersoft sets with some properties, Neutro-sophic Sets and Systems 38, (2020) 497-508.
- [36] A.U. Rahman, M. Saeed, A. Dhital, Decision making application based on neutrosophic parameterized hypersoft set theory, Neutrosophic Sets and Systems 41, (2021) 1-14.
- [37] M. Saeed, M. Ahsan, A.U. Rahman, A novel approach to mappings on hypersoft classes with application, In Theory and Application of Hypersoft Set, Pons Publication House, Brussels, (2021) 175-191.
- [38] M. Saeed, M. Ahsan, M. H. Saeed, A. Mehmood, T. Abdeljawad, An application of neutrosophic hypersoft mapping to diagnose hepatitis and propose appropriate treatment, IEEE Access 9, (2021) 70455-70471.
- [39] M. Saeed, M. Ahsan, T. Abdeljawad, A development of complex multi-fuzzy hypersoft set with application in mcdm based on entropy and similarity measure, IEEE Access 9, (2021) 60026-60042.
- [40] M. Ihsan, A.U. Rahman, M. Saeed, *Hypersoft expert set with application in decision making for recruitment process*, Neutrosophic Sets and Systems **42**, (2021) 191-207.
- [41] M. Saeed, M.K. Siddique, M. Ahsan, M.R. Ahmad, A.U. Rahman, A novel approach to the rudiments of hypersoft graphs, In Theory and Application of Hypersoft Set, Pons Publication House, Brussels, (2021) 203-214.
- [42] A.U. Rahman, M. Saeed, S. Zahid, Application in decision making based on fuzzy parameterized hypersoft set theory, Asia Mathematika 5, No.1 (2021) 19-27.
- [43] A.U. Rahman, A. Hafeez, M. Saeed, M.R. Ahmad, U. Farwa, Development of rough hypersoft set with application in decision making for the best choice of chemical material, In Theory and Application of Hypersoft Set, Pons Publication House, Brussels, (2021) 192-202.
- [44] A. Yolcu, T.Y. Ozturk, Fuzzy hypersoft sets and its application to decision-making, In Theory and Application of Hypersoft Set, Pons Publishing House, Brussels, (2021) 50-64.
- [45] M. Ihsan, A.U. Rahman, M. Saeed, Fuzzy hypersoft expert set with application in decision making for the best selection of product, Neutrosophic Sets and Systems, 46,(2021) 318-336.
- [46] A. Yolcu, F. Smarandache, T.Y. Ozturk, *Intuitionistic fuzzy hypersoft sets*, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70, No.1 (2021) 443-455.
- [47] M. Saqlain, N. Jafar, S. Moin, M. Saeed, S. Broumi, Single and multi-valued neutrosophic hypersoft set and tangent similarity measure of single valued neutrosophic hypersoft sets, Neutrosophic Sets and Systems 32, (2020) 317-329.
- [48] M. Saqlain, S. Moin, N. Jafar, M. Saeed, F. Smarandache, Aggregate operators of neutrosophic hypersoft sets, Neutrosophic Sets and Systems 32, (2020) 294-306.
- [49] M. Saqlain, M. Saeed, M.R. Ahmad, F. Smarandache, Generalization of topsis for neutrosophic hypersoft sets using accuracy function and its application, Neutrosophic Sets and Systems 27, (2019) 131-137.
- [50] N. Martin, F. Smarandache, Concentric plithogenic hypergraph based on plithogenic hypersoft sets- a novel outlook, Neutrosophic Sets and Systems 33, (2020) 78-91.
- [51] H. Kamacı, On hybrid structures of hypersoft sets and rough sets, International Journal of Modern Science and Technology 6, No.4 (2021) 69-82.
- [52] A. U. Rahman, M. Saeed, A. Hafeez, Theory of bijective hypersoft set with application in decision making, Punjab University Journal of Mathematics 7, No.53 (2021).
- [53] K. Gong, P. Wang, & Z. Xiao, Bijective soft set decision system based parameters reduction under fuzzy environments, Applied Mathematical Modelling, 37, No.6 (2013) 4474-4485..
- [54] S. U. Kumar, H. H. Inbarani, & S. S. Kumar, (2013, February). Bijective soft set based classification of medical data. In 2013 International Conference on Pattern Recognition, Informatics and Mobile Engineering (pp. 517-521). IEEE.
- [55] V. Tiwari, P. K. Jain, & P. Tandon, An integrated Shannon entropy and TOPSIS for product design concept evaluation based on bijective soft set. Journal of Intelligent Manufacturing, 30, No.4 (2019) 1645-1658.
- [56] K. Gong, P. Wang, & Y. Peng, Fault-tolerant enhanced bijective soft set with applications, Applied Soft Computing, 54, (2017) 431-439.
- [57] V. Tiwari, P. K. Jain, & P. Tandon, A bijective soft set theoretic approach for concept selection in design process, Journal of Engineering Design, 28, No.3 (2017) 100-117.

- [58] H. H. Inbarani, S. U. Kumar, A. T. Azar, & A. E. Hassanien, *Hybrid rough-bijective soft set classification system*, Neural Computing and Applications, **29**, No.8 (2018) 67-78.
- [59] S. U. Kumar, H. H. Inbarani, & S. S. Kumar, (2014) Improved bijective-soft-set-based classification for gene expression data. In Computational Intelligence, Cyber Security and Computational Models (pp. 127-132). Springer, New Delhi.
- [60] S. U. Kumar, H. H. Inbarani, & A. T. Azar, Hybrid bijective soft set-neural network for ECG arrhythmia classification, International Journal of Hybrid Intelligent Systems, 12, No.2 (2015) 103-118.
- [61] S. U. Kumar, H. H. Inbarani, & A. T. Azar, & A. E. Hassanien, *Identification of heart valve disease using bijective soft sets theory*, International Journal of Rough Sets and Data Analysis (IJRSDA), 1, No.2 (2014) 1-14.
- [62] H. Kamac, A. O. Atagn, & E. Tokta, Bijective soft matrix theory and multi-bijective linguistic soft decision system, Filomat, 32, No.11 (2018) 3799-3814.
- [63] Z. Ali, T. Mahmood, K. Ullah, & Q. Khan, Einstein geometric aggregation operators using a novel complex interval-valued pythagorean fuzzy setting with application in green supplier chain management, Reports in Mechanical Engineering, 2, No.1,(2021) 105-134.
- [64] M. Riaz, N. Çağman, N. Wali, & A. Mushtaq, Certain properties of soft multi-set topology with applications in multi-criteria decision making, Decision Making: Applications in Management and Engineering, 3, No.2,(2020) 70-96.