

Contents

Introduction by Charles Ashbacher	4
Tribute to Joseph S. Madachy by Charles Ashbacher	5
Mathematical Cartoons by Caytie Ribble	15
Here's the Scoop: Ground Balls Win Lacrosse Games by Peter R. Smith, Russell K. Banker and Paul M. Sommers	17
An Example of a Smarandache Geometry by Ion Patrascu	28
Smarandache's Concurrent Lines Theorem edited by Dr. M. Khoshnevisan	31
The Career Save Percentage Profile of NHL Goalies by Douglas A. Raeder and Paul M. Sommers	35
Some Unsolved Problems in Number Theory by Florentin Smarandache	40
Alternating Iterations of the Sum of Divisors Function and the Pseudo-Smarandache Function by Henry Ibstedt	42
Alternating Iterations of the Euler φ Function and the Pseudo-Smarandache Function by Henry Ibstedt	52
Book Reviews Edited by Charles Ashbacher	70
Alphametics contributed by Paul Boymel	76
Problems and Conjectures contributed by Lamarr Widmer	79

Solutions To Problems And Conjectures From Journal Of Recreational Mathematics 37(3) edited by Lamarr Widmer	82
Solutions to Alphametics Appearing in This Issue	91
Solutions to Alphametics in Journal of Recreational Mathematics 37(3)	92
Project Euler	96
Map Coloring with Combinatorics by Kate Jones	98
Mathematical Spectrum	101
Neutrosphic Sets and Systems	102
Topics in Recreational Mathematics 1/2015	104
Alphametics as Expressed in Recreational Mathematics Magazine	105

SOME UNSOLVED PROBLEMS IN NUMBER THEORY

Taken from Only Problems, Not Solutions!, by Florentin Smarandache, Chicago, 1991, 1993.

1) A number is *pseudo-prime* if some permutation of its digits, including the identity permutation, is a prime. Of course all primes are pseudo-primes.

For example 14 is a pseudo-prime since a permutation of its digits, 41, is a prime.

Now let's consider the infinite sequence of primes and perform the same non-identity permutation of digits for each prime of two or more digits. Does that sequence contain an infinite number of primes?

2) A number is a *pseudo-square* if some permutation of its digits, including the identity permutation, is a square. Of course all squares are pseudo-squares.

For example 52 is a pseudo-square since a permutation of its digits, 25, is a square.

Now let's consider the infinite sequence of squares and perform the same non-identity permutation of digits for each square of two or more digits. Does that sequence contain an infinite number of squares?

3) Consider the following binary sieve:

Start with the set of natural numbers

 $1, 2, 3, 4, 5, \dots$

- a) Remove every second number from this list
- b) Remove every fourth number from what remains

c) Remove every eighth number from what remains
i) Remove every 2 ^k number from what remains
Repeat to infinity
It is clear that there will be an infinite number of numbers remaining when this process is
complete. The question becomes:
Are there infinitely many primes in this sequence?
You can download free e-books of number theory from the Digital Library of Science :
http://www.gallup.unm.edu/~smarandache/eBooks-otherformats.htm