PERFECT POWERS IN SMARANDACHE N- EXPRESSIONS

Muneer Jebreel Karama

SS-Math-Hebron (Hebron Education Office / UNRWA), Field Education Officer, Jerusalem, Box 19149, Israel

Abstract The main purpose of this paper is to study the concept of Smarandache n-

expressions (but with a slight modification), its perfect powers, give conjectures,

and proposed future studies.

 $\textbf{Keywords:} \hspace{0.5cm} \textbf{Smarandache n-expressions, Smarandache 5-expressions, Smarandache 2-expressions,} \\$

perfect powers in Smarandache type expressions.

§1. Introduction

In [1] M. Perez & E. Burton, documented that J. Castillo [2], asked how many primes are there in the Smarandache n-expressions:

$$x_1^{x_2} + x_2^{x_3} + \dots + x_n^{x_1} \tag{1}$$

where $n > 1, x_1, x_2, \dots, x_n > 1$, and $gcd(x_1, x_2, \dots, x_n) = 1$ In this paper, with only slight modification of (1), we got (2) namely;

$$a^{x_1} + a^{x_2} + \dots + a^{x_n} \tag{2}$$

where $a > 1, x_1, x_2, \dots, x_n \ge 0$, and $gcd(a, x_1, x_2, \dots, x_n) = 1$ I will study the following cases of equation (2).

§2. Case1 of 5—Expressions

$$3^{x_1} + 3^{x_2} + 3^{x_3} + 3^{x_4} + 3^{x_5} = k^2, (3)$$

The solution of (3) is:

 $x_1 = 2m, x_2 = 2m + 1, x_3 = 2m + 2, x_4 = 2m + 3, x_5 = 2m + 4,$ and $k = (11)3^m$.

Proof.

$$3^{x_1} + 3^{x_2} + 3^{x_3} + 3^{x_4} + 3^{x_5} = 3^{2m} + 3^{2m+1} + 3^{2m+2} + 3^{2m+3} + 3^{2m+4}$$

$$= 3^{2m}(1 + 3^1 + 3^2 + 3^3 + 3^4)$$

$$= 3^{2m}(121)$$

$$= k^2.$$

Examples:

T	
$3^{x_1} + 3^{x_2} + 3^{x_3} + 3^{x_4} + 3^{x_5}$	k^2
$3^0 + 3^1 + 3^2 + 3^3 + 3^4$	11^{2}
$3^2 + 3^3 + 3^4 + 3^5 + 3^6$	33^{2}
$3^4 + 3^5 + 3^6 + 3^7 + 3^8$	99^{2}
$3^6 + 3^7 + 3^8 + 3^9 + 3^{10}$	297^{2}
$3^8 + 3^9 + 3^{10} + 3^{11} + 3^{12}$	891 ²
$3^{10} + 3^{11} + 3^{12} + 3^{13} + 3^{14}$	2673^{2}

The first terms and the nth terms of the sequence are:

$$121, 1089, 9801, 88209, 793881, \cdots, (11)^{2}(9)^{n-1}, \cdots$$
(4)

Where the square roots are:

$$11, 33, 99, 297, 891, \dots, (11)(3)^{(n-1)}, \dots$$
 (5)

Notice that there is no prime numbers in (5), (excluding 11).

The sum of (5) is $\frac{11(3^n)-1}{2}$, and there is no limit, since $\frac{11(3^n)-1}{2}$ becomes large as n approach infinity, the sequence has no limit, therefore it is divergent, but the summation of reciprocal convergent.

Conjecture: if p, q, r, s, t are primes numbers, then the equation $3^p + 3^q + 3^r + 3^s + 3^t = k^2$ has no solution.

§3. Case2 of 5-Expressions

$$3^{x_1} + 3^{x_2} + 3^{x_3} + 3^{x_4} + 3^{x_5} = k^2 + k^2 + k^2$$
 (6)

The solution of (3) is: $x_1=2m+1, x_2=2m+2, x_3=2m+3, x_4=2m+4, x_5=2m+5,$ and $k=11(3)^{\frac{2m+1}{2}}.$

Proof.

$$3^{x_1} + 3^{x_2} + 3^{x_3} + 3^{x_4} + 3^{x_5} = 3^{2m+1} + 3^{2m+2} + 3^{2m+3} + 3^{2m+4} + 3^{2m+5}$$

$$= 3^{2m+1} (1+3^1+3^2+3^3+3^4)$$

$$= 3^{2m+1} (121)$$

$$= 3k^2.$$

Examples:

$3^{x_1} + 3^{x_2} + 3^{x_3} + 3^{x_4} + 3^{x_5}$	$3k^2$
$3^1 + 3^2 + 3^3 + 3^4 + 3^5$	$11^2 + 11^2 + 11^2$
$3^3 + 3^4 + 3^5 + 3^6 + 3^7$	$33^2 + 33^2 + 33^2$
$3^5 + 3^6 + 3^7 + 3^8 + 3^9$	$99^2 + 99^2 + 99^2$
$3^7 + 3^8 + 3^9 + 3^{10} + 3^{11}$	$297^2 + 297^2 + 297^2$
$3^9 + 3^{10} + 3^{11} + 3^{12} + 3^{13}$	$891^2 + 891^2 + 891^2$
$3^{11} + 3^{12} + 3^{13} + 3^{14} + 3^{15}$	$2673^2 + 2673^2 + 2673^2$

The first terms and nth terms of the sequence are:

$$(3)121, (3)1089, (3)9801, (3)88209, (3)793881 \cdots (11)^{2}(3)(9)^{n-1}, \cdots$$
 (7)

The sum of (7) is $\frac{11^2(3)(9^n-1)}{8}$, and there is no limit, since $\frac{11^2(3)(9^n-1)}{8}$ becomes large as n approach infinity, the sequence has no limit, therefore it is divergent, but the summation of reciprocal convergent.

Conjecture: if p, q, r, s, t are primes numbers, then the equation $3^p + 3^q + 3^r + 3^s + 3^t = 3k^2$ has no solution.

§4. Case3 of 5-Expressions

$$3^{x_1} + 3^{x_2} + 3^{x_3} + 3^{x_4} + 3^{x_5} = (11)^2 (61)3^{x_1}, (8)$$

The solution of (8) is:

$$x_1 = 2m + 1, x_2 = 2m + 3, x_3 = 2m + 5, x_4 = 2m + 7, x_5 = 2m + 9,$$
 and $k = (61^{\frac{1}{2}})(11)(3^{\frac{2m+1}{2}}).$

Proof.

$$3^{x_1} + 3^{x_2} + 3^{x_3} + 3^{x_4} + 3^{x_5} = 3^{2m+1} + 3^{2m+3} + 3^{2m+5} + 3^{2m+7} + 3^{2m+9}$$

= $(3^{2m+1})(11)^2(61)$.

Examples:

$3^{x_1} + 3^{x_2} + 3^{x_3} + 3^{x_4} + 3^{x_5}$	$(3^{2m+1})(11)^2(61)$
$3^1 + 3^3 + 3^5 + 3^7 + 3^9$	$(3)(11)^2(61)$
$3^3 + 3^5 + 3^7 + 3^9 + 3^{11}$	$(3)^3(11)^2(61)$
$3^5 + 3^7 + 3^9 + 3^{11} + 3^{13}$	$(3)^5(11)^2(61)$
$3^7 + 3^9 + 3^{11} + 3^{13} + 3^{15}$	$(3)^7(11)^2(61)$
$3^9 + 3^{11} + 3^{13} + 3^{15} + 3^{17}$	$(3)^9(11)^2(61)$
$3^{11} + 3^{13} + 3^{15} + 3^{17} + 3^{19}$	$(3)^{11}(11)^2(61)$

The first terms and nth terms of the sequence are:

$$(3)(11)^{2}(61), (3)^{3}(11)^{2}(61), (3)^{5}(11)^{2}(61), (3)^{7}(11)^{2}(61), (3)^{9}(11)^{2}(61), (3)^{11}(11)^{2}(61), \dots, (3)(61)(11)^{2}(9)^{n-1}, \dots$$

$$(9)$$

The sum of (9) is $\frac{11^2(3)(61)(9^n-1)}{8}$, and there is no limit, since $\frac{11^2(3)(61)(9^n-1)}{8}$ becomes large as n approach infinity, the sequence has no limit, therefore it is divergent, but the summation of reciprocal convergent.

Conjecture: if p, q, r, s, t are primes numbers, then the equation $3^p + 3^q + 3^r + 3^s + 3^t = 3^{2m+1}(11)^2(61)$ has no solution.

§5. Case4 of 5-Expressions

$$3^{x_1} + 3^{x_2} + 3^{x_3} + 3^{x_4} + 3^{x_5} = (11)^2 (61)3^{x_1}, (10)$$

The solution of (10) is:

$$x_1 = 2m, x_2 = 2m + 2, x_3 = 2m + 4, x_4 = 2m + 6, x_5 = 2m + 8,$$
 and $k = (61^{\frac{1}{2}})(11)(3^m).$

Proof.

$$3^{x_1} + 3^{x_2} + 3^{x_3} + 3^{x_4} + 3^{x_5} = 3^{2m} + 3^{2m+2} + 3^{2m+4} + 3^{2m+6} + 3^{2m+8}$$

= $3^{2m} (11)^2 (61)$.

Examples:

1	
$3^{x_1} + 3^{x_2} + 3^{x_3} + 3^{x_4} + 3^{x_5}$	$3^{2m}(11)^2(61)$
$3^2 + 3^4 + 3^6 + 3^8 + 3^{10}$	$(3)^2(11)^2(61)$
$3^4 + 3^6 + 3^8 + 3^{10} + 3^{12}$	$(3)^4(11)^2(61)$
$3^6 + 3^8 + 3^{10} + 3^{12} + 3^{14}$	$(3)^6(11)^2(61)$
$3^8 + 3^{10} + 3^{12} + 3^{14} + 3^{16}$	$(3)^8(11)^2(61)$
$3^{10} + 3^{12} + 3^{14} + 3^{16} + 3^{18}$	$(3)^{10}(11)^2(61)$
$3^{12} + 3^{14} + 3^{16} + 3^{18} + 3^{20}$	$(3)^{12}(11)^2(61)$

The first terms and nth terms of the sequence are:

$$(3)^2(11)^2(61), (3)^4(11)^2(61), (3)^6(11)^2(61), (3)^8(11)^2(61),$$

 $\cdots (61)(11)^2(3)^2(9)^{n-1} \cdots$ (11)

 $\cdots (61)(11)^2(3)^2(9)^{n-1}, \cdots \\ \text{The sum of } (11) \text{ is } \frac{(3^2)11^2(61)(9^n-1)}{8}, \text{ and there is no limit, since } \frac{(3^2)11^2(61)(9^n-1)}{8} \\ \text{becomes large as n approach infinity, the sequence has no limit, therefore it is divergent, but the summation of reciprocal convergent.}$

Conjecture: if p, q, r, s, t are primes numbers, then the equation $3^p + 3^q + 3^r + 3^s + 3^t = 3^{2m}(11)^2(61)$ has no solution.

§6. Case5 of 2-Expressions

$$3^x + 3^y = z^2, (12)$$

The solution of (12) is x=2m,y=2m+1, and $z=2(3)^m$ **Proof.** $3^x+3^y=3^{2m}+3^{2m+1}=3^{2m}(1+3)=z^2$

Examples:

$3^x + 3^y$	z^2
$3^2 + 3^3$	6^2
$3^4 + 3^5$	18^{2}
$3^6 + 3^7$	54^{2}
$3^8 + 3^9$	162^{2}
$3^{10} + 3^{11}$	486^{2}
$3^{12} + 3^{13}$	1458^{2}

The first terms and nth terms of the sequence are: $36, 324, 2916, 26244, 236196, \cdots, (6)^2(9)^(n-1), \cdots$ (13) Where the square roots are:

$$6, 18, 54, 162, 486, 1458, \cdots, (6)(3)(n-1), \cdots$$
 (14)

The sum of the first n terms of the sequence (14) is given by the following formula.

$$\frac{6-6(3)^n}{1-3} = 3(3^n - 1).$$

and there is no limit, since $3(3^n-1)$ becomes large as n approach infinity, the sequence has no limit, therefore it is divergent, but the summation of reciprocal convergent.

Conjecture:

- 1) The equation $3^x + 3^y = z^2$ has one solution in prime numbers, if x, and y are prime numbers, namely (x, y) = (2, 3).
- 2) The equation $3^{x^2} + 3^{y^2} = z^2$ has unique solution, if x, and y are prime numbers, namely (x, y, z) = (3, 2, 162).

§7. Case6 of 2-Expressions

$$3^x + 3^y = 3z^2, (15)$$

The solution of (15) is x=2m+1, y=2m+2, and $z=2(3)^{\frac{2m+1}{2}}$ **Proof.** $3^x+3^y=3^{2m+1}+3^{2m+2}=3^{2m}(3+9)=3^{2m}(12)=3z^2$

Examples:

z.i.u.i.pres.	
$3^{x} + 3^{y}$	$3z^2$
$3^1 + 3^2$	$12 = 2^2 + 2^2 + 2^2$
$3^3 + 3^4$	$108 = 6^2 + 6^2 + 6^2$
$3^5 + 3^6$	$972 = 18^2 + 18^2 + 18^2$
$3^7 + 3^8$	$8748 = 54^2 + 54^2 + 54^2$
$3^9 + 3^{10}$	$78732 = 162^2 + 162^2 + 162^2$
$3^{11} + 3^{12}$	$708588 = 486^2 + 486^2 + 486^2$
$3^{13} + 3^{14}$	$6377292 = 1458^2 + 1458^2 + 1458^2$

The first terms and nth terms of the sequence are:

$$12, 108, 972, 8748, 78732, \dots, 12(9)n - 1, \dots$$
 (16)

The sum of the first n terms of the sequence (16) is given by the following formula.

$$\frac{12 - 12(9)^n}{1 - 9} = \frac{3(9^n - 1)}{2}.$$

and there is no limit, since $\frac{3(9^n-1)}{2}$ becomes large as n approach infinity, the sequence has no limit, therefore it is divergent, but the summation of reciprocal convergent.

Conjecture: The equation $3^x + 3^y = 12(3)^{2m}$ has no solution, if x, and y are prime numbers.

§8. Case7 of 2-Expressions

$$3^x + 3^y = (10)3^{2m+1}, (17)$$

The solution of (17) is x=2m+1, y=2m+3. **Proof:** $3^x+3^y=3^{2m+1}+3^{2m+3}=3^{2m+1}(1+9)=3^{2m+1}(10)$

Examples:

$3^x + 3^y$	$10(3)^{2m+1}$
$3^1 + 3^3$	30
$3^3 + 3^5$	270
$3^5 + 3^7$	2430
$3^7 + 3^9$	21870
$3^9 + 3^{11}$	196830
$3^{11} + 3^{13}$	1771470
$3^{13} + 3^{15}$	15943230

The first terms and the nth terms of the sequence are:

$$30, 270, 2430, 21870, 196830, \dots, 30(9)n - 1, \dots$$
 (18)

The sum of the first n terms of the sequence (18) is given by the following formula.

$$\frac{30 - 30(9)^n}{1 - 9} = \frac{15(9^n - 1)}{4}.$$

and there is no limit, since $\frac{15(9^n-1)}{4}$ becomes large as n approach infinity, the sequence has no limit, therefore it is divergent, but the summation of reciprocal convergent.

Conjecture: The equation $3^x + 3^y = 10(3)^{2m+1}$ has infinitely many solutions, if x, and y are prime numbers.

§9. Case8 of 2-Expressions

$$3^x + 3^y = 3^{2m}(10), (19)$$

The solution of (19) is x=2m,y=2m+2. **Proof.** $3^x+3^y=3^{2m}+3^{2m+2}=3^{2m}(1+9)=3^{2m}(10)$

Examples:

$3^x + 3^y$	$10(3)^{2m}$
$3^2 + 3^4$	90
$3^4 + 3^6$	810
$3^6 + 3^8$	7290
$3^8 + 3^{10}$	65610
$3^{10} + 3^{12}$	590490
$3^{12} + 3^{14}$	5314410
$3^{14} + 3^{16}$	47829690

The first terms and the nth terms of the sequence are:

$$90,810,7290,65610,590490,\cdots,90(9)^{n-1},\cdots$$
 (20)

The sum of the first n terms of the sequence (20) is given by the following formula.

$$\frac{90 - 90(9)^n}{1 - 9} = \frac{45(9^n - 1)}{4}.$$

and there is no limit, since $\frac{45(9^n-1)}{4}$ becomes large as n approach infinity, the sequence has no limit, therefore it is divergent, but the summation of reciprocal convergent.

Conjecture: The equation $3^x + 3^y = 10(3)^{2m}$ has infinitely many solutions, if x, and y are prime numbers.

§10. Case9 of 2-Expressions

$$3^x - 3^y = 2(3)^y, (21)$$

The solution of (21) is x = 6m - 2, y = 6m - 3. **Proof.** $3^x - 3^y = 3^{6m-2} - 3^{6m-3} = 2(3)^{6m-3}$

Examples:

· I	
$3^{x} - 3^{y}$	$2(3)^{6m-3}$
$3^4 - 3^3$	$2(3)^3$
$3^{10} - 3^9$	$2(3)^9$
$3^{16} - 3^{15}$	$2(3)^{15}$
$3^{22} - 3^{21}$	$2(3)^{21}$
$3^{28} - 3^{27}$	$2(3)^{27}$
$3^{34} - 3^{33}$	$2(3)^{33}$
$3^{40} - 3^{39}$	$2(3)^{39}$

The first terms and the nth terms of the sequence are:

$$2(3)^3, 2(3)^9, 2(3)^{15}, 2(3)^{21}, 2(3)^{27}, \dots, 2(3)^3 (729)^{n-1}, \dots$$
 (22)

The sum of the first n terms of the sequence (20) is given by the following formula.

$$\frac{54 - 54(729)^n}{1 - 729} = \frac{27(729^n - 1)}{364}.$$

and there is no limit, since $\frac{27(729^n-1)}{364}$ becomes large as n approach infinity, the sequence has no limit, therefore it is divergent, but the summation of reciprocal convergent.

Conjecture: The equation $3^x - 3^y = 2(3)^y$ has no solutions, if x, and y are prime numbers.

§11. Case10 of 2-Expressions

$$3^x + 3^y = 4(3)^y, (23)$$

The solution of (23) is x = 6m - 2, y = 6m - 3. **Proof.** $3^x + 3^y = 3^{6m-2} + 3^{6m-3} = 4(3)^{6m-3}$

Examples:

1	
$3^x + 3^y$	$4(3)^{6m-3}$
$3^4 + 3^3$	$4(3)^3$
$3^{10} + 3^9$	$4(3)^9$
$3^{16} + 3^{15}$	$4(3)^{15}$
$3^{22} + 3^{21}$	$4(3)^{21}$
$3^{28} + 3^{27}$	$4(3)^{27}$
$3^{34} + 3^{33}$	$4(3)^{33}$
$3^{40} + 3^{39}$	$4(3)^{39}$

The first terms and the nth terms of the sequence are:

$$4(3)3, 4(3)9, 4(3)15, 4(3)21, 4(3)27, \dots, 4(3)3(729)n - 1, \dots$$
 (24)

The sum of the first n terms of the sequence (24) is given by the following formula.

$$\frac{108 - 108(729)^n}{1 - 729} = \frac{27(729^n - 1)}{182}.$$

and there is no limit, since $\frac{27(729^n-1)}{182}$ becomes large as n approach infinity, the sequence has no limit, therefore it is divergent, but the summation of reciprocal convergent.

Conjecture: The equation $3^x + 3^y = 4(3)^y$ has no solutions, if x, and y are prime numbers.

§12. Case11 of 2-Expressions

$$2^x + 2^y = z^2, (25)$$

The solution of (25) is x=2m-2, y=2m+1, and $z=3(2)^{m-1}.$ **Proof.** $2^x+2^y=2^{2m-2}+2^{2m+1}=2^{2m}(2^{-2}+2^1)=9(2)^{2m-2}=z^2$

Examples:

$2^{x} + 2^{y}$	Z^2
$2^0 + 2^3$	3^2
$2^2 + 2^5$	6^{2}
$2^4 + 2^7$	12^{2}
$2^6 + 2^9$	24^{2}
$2^8 + 2^{11}$	48^{2}
$2^{10} + 2^{13}$	96^{2}
$2^{12} + 2^{15}$	192^{2}

The first terms and the nth terms of the sequence are:

$$9, 36, 144, 576, 2304 \cdots, (9)(4)n - 1, \cdots$$
 (26)

Where the square roots are:

$$3, 6, 12, 24, 48, 96 \cdots, (3)(2)(n-1), \cdots$$
 (27)

The sum of the first n terms of the sequence (27) is given by the following formula.

$$\frac{3-3(2)^n}{1-2} = 3(2^n - 1).$$

and there is no limit, since $3(2^n-1)$ becomes large as n approach infinity, the sequence has no limit, therefore it is divergent, but the summation of reciprocal convergent.

Conjecture: The equation $2^x + 2^y = z^2$ has one solution if x, and y are prime numbers, i.e. (x, y) = (2, 5).

Future Studies

The Smarandache n-expressions suggest that there may be future interesting n-expressions yet to be revealed.

Reference

- [1] E. Burton, & M. Perez, Some Notions and Questions in Number Theory, Smarandache Notions Journal **III**, Babes-Bolyai University, Department of Mathematics 3400 Cluj-Napoca, Romania, 1993.
- [2] J. Castillo, The Smarandache n-expressions, Mathematical Spectrum **29** (1997/8), 21.