Florentin Smarandache, Neutrosophic Perspectives: Triplets, Duplets, Multisets, Hybrid Operators, Modal Logic, Hedge Algebras. And Applications (book), Pons Editions, Belgium, 323 pp., 2017.

CHAPTER X

X.1. Neutrosophic Multiset

Let \mathcal{U} be a universe of discourse, and $M \subset \mathcal{U}$.

X.1.1. Definition

A *Neutrosophic Multiset M* is a neutrosophic set where one or more elements are repeated with the same neutrosophic components, or with different neutrosophic components.

X.1.2. Examples

 $A = \{a(0.6, 0.3, 0.1), b(0.8, 0.4, 0.2), c(0.5, 0.1, 0.3)\}$ is a neutrosophic set (not a neutrosophic multiset).

But

$$B = \{a(0.6, 0.3, 0.1), a(0.6, 0.3, 0.1), b(0.8, 0.4, 0.2)\}$$

is a neutrosophic multiset, since the element a is repeated; we say that the element a has neutrosophic multiplicity 2 with the same neutrosophic components.

While

$$C = \begin{cases} a(0.6, 0.3, 0.1), a(0.7, 0.1, 0.2), \\ a(0.5, 0.4, 0.3), c(0.5, 0.1, 0.3) \end{cases}$$

is also a neutrosophic multiset, since the element *a* is repeated (it has *neutrosophic multiplicity 3*),

but with different neutrosophic components, since, for example, during the time, the neutrosophic membership of an element may change.

If the element a is repeated k times keeping the same neutrosophic components (t_a, i_a, f_a) , we say that a has multiplicity k.

But if there is some change in the neutrosophic components of a, we say that a has the *neutrosophic multiplicity* k.

Therefore, we define in general the *Neutros-ophic Multiplicity Function*:

$$nm: \mathcal{U} \to \mathbb{N},$$

where $\mathbb{N} = \{1, 2, 3, ..., \infty\},$
and for any $a \in A$ one has (1)
 $nm(a)$
$$= \{(k_1, \langle t_1, i_1, f_1 \rangle), (k_2, \langle t_2, i_2, f_2 \rangle), ..., (k_i, \langle t_i, i_i, f_i \rangle), ...\}$$

which means that a is repeated k_1 times with the neutrosophic components $\langle t_1, i_1, f_1 \rangle$; a is repeated k_2 times with the neutrosophic components $\langle t_2, i_2, f_2 \rangle$, ..., a is repeated k_j times with the neutrosophic components $\langle t_j, i_j, f_j \rangle$, ..., and so on.

Of course, all $k_1, k_2, ..., k_j, ... \in \mathbb{N}$, and $\langle t_p, i_p, f_p \rangle \neq \langle t_r, i_r, f_r \rangle$, for $p \neq r$, with $p, r \in \mathbb{N}$.

Also, all neutrosophic components are with respect to the set *A*. Then, a neutrosophic multiset *A* can be written as:

$$(A, nm(a))$$

or $\{(a, nm(a), \text{ for } a \in A)\}.$

X.1.3. Examples of operations with neutrosophic multisets.

Let's have:

$$A = \{5_{\langle 0.6,0.3,0.2\rangle}, 5_{\langle 0.6,0.3,0.2\rangle}, 5_{\langle 0.4,0.1,0.3\rangle}, 6_{\langle 0.2,0.7,0.0\rangle}\}$$

$$B = \{5_{\langle 0.6,0.3,0.2\rangle}, 5_{\langle 0.8,0.1,0.1\rangle}, 6_{\langle 0.9,0.0,0.0\rangle}\}$$

$$C = \{5_{\langle 0.6,0.3,0.2\rangle}, 5_{\langle 0.6,0.3,0.2\rangle}\}.$$

Then:

X.1.3.1. Intersection of Neutrosophic Multisets.

$$A \cap B = \{5_{(0.6,0.3,0.2)}\}.$$

X.1.3.2. Union of Neutrosophic Multisets.

$$A \cup B = \begin{cases} 5_{\langle 0.6, 0.3, 0.2 \rangle}, 5_{\langle 0.6, 0.3, 0.2 \rangle}, 5_{\langle 0.4, 0.1, 0.3 \rangle}, 5_{\langle 0.8, 0.1, 0.1 \rangle}, \\ 6_{\langle 0.2, 0.7, 0.0 \rangle}, 6_{\langle 0.9, 0.0, 0.0 \rangle} \end{cases}.$$

X.1.3.3. Inclusion of Neutrosophic Multisets.

$$C \subset A$$
, but $C \not\subset B$

X.1.3.4. Cardinality of Neutrosophic Multisets.

Card(A) = 4, and Card(B) = 3, where $Card(\cdot)$ means cardinal.

X.1.3.5. Cartesian Product of Neutrosophic Multisets.

 $B \times C$

$$= \begin{cases} \left(5_{\langle 0.6,0.3,0.2\rangle},5_{\langle 0.6,0.3,0.2\rangle}\right),\left(5_{\langle 0.6,0.3,0.2\rangle},5_{\langle 0.6,0.3,0.2\rangle}\right),\\ \left(5_{\langle 0.8,0.1,0.1\rangle},5_{\langle 0.6,0.3,0.2\rangle}\right),\left(5_{\langle 0.8,0.1,0.1\rangle},5_{\langle 0.6,0.3,0.2\rangle}\right),\\ \left(6_{\langle 0.9,0.0,0.0\rangle},5_{\langle 0.6,0.3,0.2\rangle}\right),\left(6_{\langle 0.9,0.0,0.0\rangle},5_{\langle 0.6,0.3,0.2\rangle}\right) \end{cases}.$$

X.1.3.6. Difference of Neutrosophic Multisets.

$$A - B = \{5_{\langle 0.6, 0.3, 0.2 \rangle}, 5_{\langle 0.4, 0.1, 0.3 \rangle}, 6_{\langle 0.2, 0.7, 0.0 \rangle}\}$$

$$A - C = \{5_{\langle 0.4, 0.1, 0.3 \rangle}, 6_{\langle 0.2, 0.7, 0.0 \rangle}\}$$

$$C - B = \{5_{\langle 0.6, 0.3, 0.2 \rangle}\}$$

X.1.3.7. Sum of Neutrosophic Multisets.

 $A \uplus B$

$$= \begin{cases} 5_{\langle 0.6,0.3,0.2\rangle}, 5_{\langle 0.6,0.3,0.2\rangle}, 5_{\langle 0.6,0.3,0.2\rangle}, 5_{\langle 0.4,0.1,0.3\rangle}, 5_{\langle 0.8,0.1,0.1\rangle}, \\ 6_{\langle 0.2,0.7,0.9\rangle}, 6_{\langle 0.9,0.0,0.0\rangle} \end{cases}$$

$$B \uplus B = \begin{cases} 5_{\langle 0.6,0.3,0.2\rangle}, 5_{\langle 0.6,0.3,0.2\rangle}, 5_{\langle 0.8,0.1,0.1\rangle}, 5_{\langle 0.8,0.1,0.1\rangle}, \\ 6_{\langle 0.9,0.0,0.0\rangle}, 6_{\langle 0.9,0.0,0.0\rangle} \end{cases}.$$

Let's compute the neutrosophic multiplicity function, with respect to several of the previous neutrosophic multisets.

$$nm_A: A \to \mathbb{N}$$

$$nm_{A}(5) = \{(2, \langle 0.6, 0.3, 0.2 \rangle), (1, \langle 0.4, 0.1, 0.3 \rangle)\}$$

$$nm_{A}(6) = \{(1, \langle 0.2, 0.7, 0.0 \rangle)\}.$$

$$nm_{B}: B \to \mathbb{N}$$

$$nm_{B}(5) = \{(1, \langle 0.6, 0.3, 0.2 \rangle), (1, \langle 0.8, 0.1, 0.1 \rangle)\}$$

$$nm_{B}(6) = \{(1, \langle 0.2, 0.7, 0.0 \rangle)\}.$$

$$nm_{C}: C \to \mathbb{N}$$

$$nm_{C}(5) = \{(2, \langle 0.6, 0.3, 0.2 \rangle)\}$$

References

1. Eric W. Weisstein, *Multiset*, MathWorld, A Wolfram Web Resource.

http://mathworld.wolfram.com/Multiset.html

2. F. Smarandache, *Neutrosphic Multiset Applied in Physical Proceses*, Actualization of the Internet of Things, a FIAP Industrial Physics Conference, Monterey, California, Jan. 2017

X.2. Neutrosophic Multiset Applied in Physical Processes

Let U be a universe of discourse and a set $M \subseteq U$. The *Neutrosophic Multiset M* is defined as a neutrosophic set with the property that one or more elements are repeated either with the same neutrosophic components, or with different neutrosophic components.

For example, $Q = \{a(0.6,0.3,0.2), a(0.6,0.3,0.2), a(0.5,0.4,0.1), b(0.7,0.1,0.1)\}$ is a neutrosophic multiset.

The Neutrosophic Multiplicity Function is defined as:

$$nm: U \to N = \{1, 2, 3, \dots\},\$$

and for each x∈M one has

$$nm(x) = \{(k_1, < t_1, i_1, f_1 >,), (k_2, < t_2, i_2, f_2 >), ..., (k_i, < t_i, i_i, f_i >), ...\},$$
(1)

which means that in the set M the element x is repeated k_1 times with the neutrosophic components $\langle t_1, i_1, f_1 \rangle$, and k_2 times with the neutrosophic components $\langle t_2, i_2, f_2 \rangle$, ..., k_i times

with the neutrosophic components $\langle t_j, i_j, f_j \rangle$, ... and so on. Of course, $\langle t_p, i_p, f_p \rangle$ $\neq \langle t_r, i_r, f_r \rangle$ for $p \neq r$.

For example, with respect to the above neutrosophic multiset Q

$$nm(a) = \{(2, <0.6, 0.3, 0.2>), (1, <0.5, 0.4, 0.1>)\}.$$

Neutrosophic multiset is used in time series, and in representing instances of the physical process at different times, since its neutrosophic components change in time.

X.3. Neutrosophic Complex Multiset

Let \mathcal{U} be a universe of discourse, and $\mathcal{S} \subset \mathcal{U}$.

A *Neutrosophic Complex Multiset S* is a neutrosophic complex set, which has one or more elements that repeat either with the same complex neutrosophic components, or with different other complex neutrosophic components.

Example of Neutrosophic Complex Set.

$$B_1 = \begin{cases} a \big(0.3e^{j(0.2)}, 0.1e^{j(0.1)}, 0.8e^{j(0.5)} \big), \\ b \big(0.5e^{j(0.4)}, 0.2e^{j(0.3)}, 0.1e^{j(0.2)} \big) \end{cases}$$

is a neutrosophic complex set.

Examples of Neutrosophic Complex Multiset.

$$B_2 = \begin{cases} a(0.3e^{j(0.2)}, 0.1e^{j(0.1)}, 0.8e^{j(0.5)}), \\ a(0.3e^{j(0.2)}, 0.1e^{j(0.1)}, 0.8e^{j(0.5)}) \end{cases}$$

is a neutrosophic complex multiset because the element a repeats with the same neutrosophic complex components.

$$B_3 = \begin{cases} a(0.3e^{j(0.2)}, 0.1e^{j(0.1)}, 0.8e^{j(0.5)}), \\ a(0.4e^{j(0.3)}, 0.2e^{j(0.1)}, 0.7e^{j(0.4)}), \\ b(0.5e^{j(0.4)}, 0.2e^{j(0.3)}, 0.1e^{j(0.2)}) \end{cases}.$$

is a neutrosophic complex multiset because the element a repeats, but with different neutrosophic complex components.

$$B_4 = \begin{cases} a(0.3e^{j(0.2)}, 0.1e^{j(0.1)}, 0.8e^{j(0.5)}), \\ a(0.3e^{j(0.2)}, 0.1e^{j(0.1)}, 0.8e^{j(0.5)}), \\ a(0.7e^{j(0.6)}, 0.2e^{j(0.1)}, 0.1e^{j(0.0)}), \\ b(0.7e^{j(0.2)}, 0.0e^{j(0.3)}, 0.4e^{j(0.2)}) \end{cases}.$$

is a neutrosophic complex multiset because the element "a" repeats once with the same neutrosophic components, and afterwards with different neutrosophic components.

Similarly, we define the *Neutrosophic Complex Multiplicity Function*:

$$ncm: \mathcal{U} \to N = \{1, 2, 3, \dots\}$$

for $a \in S$ one has

$$\begin{split} ncm(a) : & \big\{ \big(k_1, < t_1 e_{j\alpha_1}, i_1 e_{j\beta_1}, f_1 e_{j\gamma_1} > \big), \big(k_2, \\ & < t_2 e_{j\alpha_2}, i_2 e_{j\beta_2}, f_2 e_{j\gamma_2} > \big), \dots, \big(k_n, \\ & < t_n e_{j\alpha_n}, i_n e_{j\beta_n}, f_n e_{j\gamma_n} > \big), \dots \big\}. \end{split}$$

Whence, a neutrosophic complex multiset S can be written as (S, ncm(a)) or $\{(a, ncm(a)), \text{ for } a \in S\}$.

The Neutrosophic Multisets and the Neutrosophic Multiset Algebraic Structures were introduced by Florentin Smarandache in 2016.