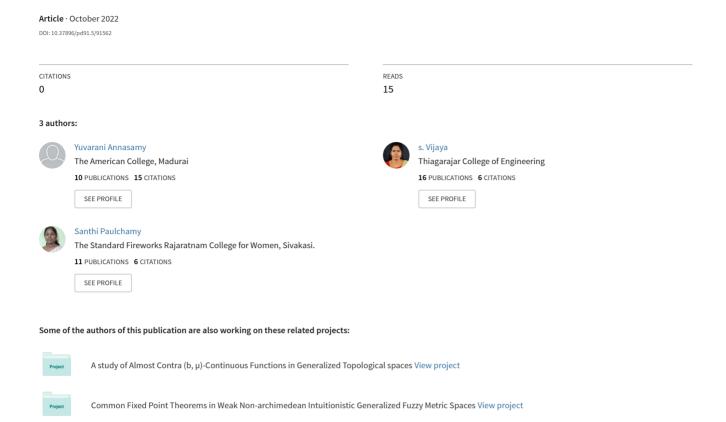
Contra GN-Continuity in Neutrosophic Generalized Topological Spaces



Contra G_N-Continuity in Neutrosophic Generalized Topological Spaces

¹ A. YUVARANI, ² S. VIJAYA and ³ P. SANTHI

¹PG & Research Department of Mathematics, The American College, Madurai Kamaraj University,

Madurai, Tamil Nadu, India. E-mail: yuvamaths2003@gmail.com

²PG & Research Department of Mathematics, Thiagarajar College, Madurai Kamaraj

University, Madurai, Tamil Nadu, India. E-mail: viviphd.11@gmail.com

³PG & Research Department of Mathematics, The Standard Fireworks Rajaratnam College for Women, Sivakasi,

Madurai Kamaraj University, Tamil Nadu, India.

E-mail: saayphd.11@gmail.com

Abstract

One of the aims of this article is to promote some Contra Continuous Functions (CCF) by means of Neutrosophic Sets in Generalized Topological Spaces (G_N -TSs). Then, we deliberate certain properties of CCF in G_N -TSs. Further, we talk over about the associations among several types of CCF along with illustrations. Also, we dealt the concept of almost continuous and its contra characteristics in G_N -TSs. Finally, we discuss some separation axioms related to G_N -TSs.

Key words: Contra G_N -continuous function $(G_N$ -CCF), contra G_N - α -continuous function $(G_N$ - α CCF), contra G_N -semicontinuous function $(G_N$ - α CCF), contra G_N -precontinuous function $(G_N$ - α CCF) and contra G_N -beta continuous function $(G_N$ - α CCF).

Introduction

In 1965, fuzzy set idea was instigated by Zadeh [19] that share out uncertainty in actual lifestyles conditions. A special note to the field of topology was originated by Chang [3] in 1968. Attanassov [1] in 1983, considered both membership and non-membership of the elements in intuitionistic fuzzy sets. Coker [4] located a place for Intuitionistic fuzzy topological space by extending the concepts of fuzziness. Likewise, Jeyaraman M and Yuvarani A [9] talk over about Contra Alpha Generalized Semi Continuous Mappings in Intuitionistic Fuzzy Topology. The significant conjoint studies of contra continuity on generalized topological spaces have been done by many researchers [8] & [10].

Smarandache [5], [6], [7] & [18] engrossed his interpretations en route for the degree of indeterminacy that directed into Neutrosophic Sets (NS). In a little while, Salama and Albowi [13] acquainted Neutrosophic Topological Spaces (NTS). In addition to that, the continuous (Cts) functions in NTS were offered by Salama, Smarandache and Valeri Kromov [14]. In [2], Contra-Continuity via topological ideals was introduced and analysed by Bhuvaneshwari and et. al., in Ideal Topological Spaces.

Further, Vijaya and Santhi [16] investigated about the Characterization of Almost (α, μ) -Continuous functions and its properties in Generalized Topological Spaces. In addition to that, Contra N α -I-Continuity over Nano Ideals in Nano Topological Spaces and Contra irresolute functions in Generalized Neutrosophic Topological spaces was look over by Vijaya and et. al.,[15],[17]. By way of retaining most of these works as an inspiration, Raksha Ben, Hari Siva Annam [11] & [12] contrived G_N -Topological Space and reflected its properties, in 2020.

Here we deliberate certain properties of CCF in G_N -TSs. Additionally, we presented several types of CCF along with illustrations. Also, we dealt the concept of almost continuous and its contra characteristics in G_N -TSs. To end with, we inspected some separation axioms related to G_N -TSs.

Prerequisites

Definition 2.1. [13]

Let Γ be a non-empty fixed set. A NS, $F = \{\langle \gamma, \mathcal{M}_F(\gamma), \mathcal{J}_F(\gamma), \mathcal{N}_F(\gamma) \rangle : \gamma \in \Gamma \}$ where $\mathcal{M}_F(\gamma)$, $\mathcal{J}_F(\gamma)$ and $\mathcal{N}_F(\gamma)$ represents the degree of membership, indeterminacy and non-membership functions respectively of every element $\gamma \in \Gamma$.

Remark 2.2. [13]

A NS, F can be recognized as a structured triple $F = \{ \langle \gamma, \mathcal{M}_F(\gamma), \mathcal{J}_F(\gamma), \mathcal{N}_F(\gamma) \rangle : \gamma \in \Gamma \}$ in $]^-0$, $1^+[$ on Γ .

Remark 2.3.[13]

The NS, 0_N and 1_N in Γ is defined as

$$\begin{array}{ll} (P_1) \ 0_N = \{ \langle \ \gamma, \ 0, \ 0, \ 1 \ \rangle : \gamma \in \Gamma \}; \\ (P_2) \ 0_N = \{ \langle \ \gamma, \ 0, \ 1, \ 1 \ \rangle : \gamma \in \Gamma \}; \\ (P_3) \ 0_N = \{ \langle \ \gamma, \ 0, \ 1, \ 0 \ \rangle : \gamma \in \Gamma \}; \\ (P_4) \ 0_N = \{ \langle \ \gamma, \ 0, \ 0, \ 0 \ \rangle : \gamma \in \Gamma \}; \\ (P_5) \ 1_N = \{ \langle \ \gamma, \ 1, \ 0, \ 0 \ \rangle : \gamma \in \Gamma \}; \\ (P_6) \ 1_N = \{ \langle \ \gamma, \ 1, \ 0, \ 1 \ \rangle : \gamma \in \Gamma \}; \\ (P_7) \ 1_N = \{ \langle \ \gamma, \ 1, \ 1, \ 0 \ \rangle : \gamma \in \Gamma \}; \\ (P_8) \ 1_N = \{ \langle \ \gamma, \ 1, \ 1, \ 1 \ \rangle : \gamma \in \Gamma \} \\ \end{array}$$

Definition 2.4. [13]

If
$$F = \{\langle \mathcal{M}_F(\gamma), \mathcal{J}_F(\gamma), \mathcal{N}_F(\gamma) \rangle\}$$
, then the complement of F on Γ is
(P₉) $F^c = \{\langle \gamma, 1 - \mathcal{M}_F(\gamma), 1 - \mathcal{J}_F(\gamma) \text{ and } 1 - \mathcal{N}_F(\gamma) \rangle : \gamma \in \Gamma\}$
(P₁₀) $F^c = \{\langle \gamma, \mathcal{N}_F(\gamma), \mathcal{J}_F(\gamma) \text{ and } \mathcal{M}_F(\gamma) \rangle : \gamma \in \Gamma\}$
(P₁₁) $F^c = \{\langle \gamma, \mathcal{N}_F(\gamma), 1 - \mathcal{J}_F(\gamma) \text{ and } \mathcal{M}_F(\gamma) \rangle : \gamma \in \Gamma\}$

Definition 2.5. [13]

Let Γ be a non-empty set and let $F = \{ \langle \gamma, \mathcal{M}_F(\gamma), \mathcal{J}_F(\gamma), \mathcal{N}_F(\gamma) \rangle : \gamma \in \Gamma \}$ and $T = \{ \langle \gamma, \mathcal{M}_F(\gamma), \mathcal{J}_F(\gamma), \mathcal{N}_F(\gamma) \rangle : \gamma \in \Gamma \}$

$$\mathcal{M}_{T}(\gamma), \mathcal{J}_{T}(\gamma), \mathcal{N}_{T}(\gamma) \rangle : \gamma \in \Gamma \}.$$
 Then

$$(P_{12}) \ F \subseteq T \Rightarrow \mathcal{M}_{F}(\gamma) \leq \mathcal{M}_{T}(\gamma), \ \mathcal{J}_{F}(\gamma) \leq \mathcal{J}_{T}(\gamma), \ \mathcal{N}_{F}(\gamma) \geq \mathcal{N}_{T}(\gamma), \forall \ \gamma \in \Gamma$$

$$(P_{13}) F \subseteq T \Rightarrow \mathcal{M}_{F}(\gamma) \leq \mathcal{M}_{T}(\gamma), \mathcal{J}_{F}(\gamma) \geq \mathcal{J}_{T}(\gamma), \mathcal{N}_{F}(\gamma) \geq \mathcal{N}_{T}(\gamma), \forall \gamma \in \Gamma$$

Definition 2.6. [13]

Let Γ be a non-empty set and $F = \{ \langle \gamma, \mathcal{M}_F(\gamma), \mathcal{J}_F(\gamma), \mathcal{N}_F(\gamma) \rangle : \gamma \in \Gamma \}$ and $T = \{ \langle \gamma, \mathcal{M}_F(\gamma), \mathcal{J}_F(\gamma), \mathcal{N}_F(\gamma) \rangle : \gamma \in \Gamma \}$

$$\mathcal{M}_{T}(\gamma), \mathcal{J}_{T}(\gamma), \mathcal{N}_{T}(\gamma) \rangle : \gamma \in \Gamma$$
 are NSs. Then,

$$(P_{14}) F \cap T = \langle \gamma, \mathcal{M}_{F}(\gamma) \wedge \mathcal{M}_{T}(\gamma), \mathcal{J}_{F}(\gamma) \vee \mathcal{J}_{T}(\gamma), \mathcal{N}_{F}(\gamma) \vee \mathcal{N}_{T}(\gamma) \rangle$$

$$(P_{15}) F \cap T = \langle \gamma, \mathcal{M}_{F}(\gamma) \wedge \mathcal{M}_{T}(\gamma), \mathcal{J}_{F}(\gamma) \wedge \mathcal{J}_{T}(\gamma), \mathcal{N}_{F}(\gamma) \vee \mathcal{N}_{T}(\gamma) \rangle$$

$$(P_{16}) \ F \cup T = \langle \ \gamma, \ \mathcal{M}_F(\gamma) \lor \mathcal{M}_T(\gamma), \ \mathcal{J}_F(\gamma) \land \mathcal{J}_T(\gamma), \ \mathcal{N}_F(\gamma) \land \mathcal{N}_T(\gamma) \ \rangle$$

(P₁₇) FUT =
$$\langle \gamma, \mathcal{M}_{F}(\gamma) \lor \mathcal{M}_{T}(\gamma), \mathcal{J}_{F}(\gamma) \lor \mathcal{J}_{T}(\gamma), \mathcal{N}_{F}(\gamma) \land \mathcal{N}_{T}(\gamma) \rangle$$

Definition 2.7. [12]

Let $\Gamma \neq \emptyset$. A family of Neutrosophic subsets of Γ is G_N -topology if it satisfies

- (Δ_1) $0_N \in G_N$
- (Δ_2) $F_1 \cup F_2 \in G_N$ for any $F_1, F_2 \in G_N$.

Remark 2.8. [12]

Members of G_N -topology are G_N -Open Sets (G_N -Os) and their complements are G_N -Closed Sets (G_N -Cs).

Definition 2.9. [12]

Let (Γ, G_N) be a G_N -TS and $F = \{ \langle \Gamma, \mathcal{M}_F(\gamma), \mathcal{J}_F(\gamma), \mathcal{N}_F(\gamma) : \gamma \in \Gamma \rangle \}$ be a NS in Γ .

- (Δ_1) G_N -Closure $(F) = \bigcap \{T : F \subseteq T, T \text{ is } G_N\text{-Cs}\}$
- (Δ_1) G_N -Interior $(F) = \bigcup \{W : W \subseteq F, W \text{ is } G_N\text{-Os}\}\$

Definition 2.10. [11]

A NS, F in a G_N-TS is said to be

- (Δ_1) G_N - σ -Open Set $(G_N$ - σ Os) if $F \subseteq G_N$ - $clo(G_N$ -intr(F))
- (Δ_2) G_N- π -Open Set (G_N- π Os) if F \subseteq G_N- $intr(G_N$ -clo(F)),
- (Δ_3) G_N - α -Open Set (G_N - α Os) if $F \subseteq G_N$ $intr(G_N$ - $clo(G_N$ -intr(F))),
- (Δ_4) G_N - β -Open Set (G_N - βO_S) if $F \subseteq G_N$ - $clo(G_N$ - $intr(G_N$ -clo(F))),
- (Δ_5) G_N-regular-Open Set (G_N-rOs) if $F = G_N$ -intr(G_N-clo(F)),
- (Δ_6) G_N-b-Open Set (G_N-bOs) if $F \subseteq G_N$ - $clo(G_N$ - $intr(F)) <math>\bigcup G_N$ - $intr(G_N$ -clo(F)).

Lemma 2.11. [11]

Every G_N - αO_S is G_N - σO_S and G_N - πO_S .

Let the function $\psi: (\Gamma_1, \rho_1) \to (\Gamma_2, \rho_2)$ is defined to be G_N -Cts (resp. G_N - σ Cts, G_N - π Cts, G_N - α Cts) if the inverse image of G_N -Cs in (Γ_2, ρ_2) is a G_N -Cs (resp. G_N - σ Cs, G_N - π Cs, G_N - α Cs, G_N - α Cs, G_N - α Cs) in (Γ_1, ρ_1) .

Contra G_N-Continuous Functions

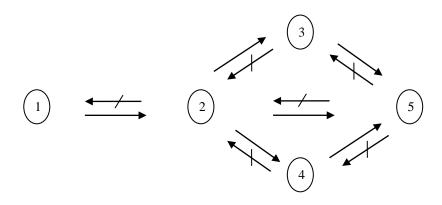
Definition 3.1

Let (Γ_1, ρ_1) and (Γ_2, ρ_2) be G_N -TSs. Then $\psi: \Gamma_1 \to \Gamma_2$ is said to be

- $(Δ_1)$ Contra G_N -Continuous Function $(G_N$ -CCF) if for each G_N -Os M in $Γ_2$, $ψ^{-1}(M)$ is a G_N -Cs in $Γ_1$,
- (Δ_2) Contra G_N -α-Continuous Function $(G_N$ -αCCF) if for each G_N -Os M in Γ_2 , $\psi^{-1}(M)$ is a G_N -αCs in Γ_1 ,
- $(Δ_3)$ Contra G_N -σ-Continuous Function $(G_N$ -σCCF) if for each G_N -Os M in $Γ_2$, $ψ^{-1}(M)$ is a G_N -σCs in $Γ_1$,
- $(Δ_4)$ Contra G_N - π -Continuous Function $(G_N$ - π CCF) if for each G_N -Os M in Γ_2 , $\psi^{-1}(M)$ is a G_N - π Cs in Γ_1 ,
- (Δ₅) Contra G_N -β-Continuous Function (G_N -βCCF) if for each G_N -Os M in Γ_2 , $\psi^{-1}(M)$ is a G_N -βCs in Γ_1 .

Remark 3.2

Let ψ : $(\Gamma_1, \rho_1) \to (\Gamma_2, \rho_2)$ be a function, where (Γ_1, ρ_1) and (Γ_2, ρ_2) be G_N -TSs. Then we obtain



Where A \longrightarrow B means that A does not necessarily imply B and, moreover,

$$\left(5\right) = G_{N}-\beta CCF$$

Example 3.3

The contrary implications may not be factual in general as shown below.

(i) G_N - $\alpha CCF \longrightarrow G_N$ -CCF

Let $\psi: (\Gamma_1, \rho_1) \to (\Gamma_2, \rho_2)$ be defined as $\psi(s) = v$ and $\psi(t) = u$, where $\Gamma_1 = \{s, t\}$ and $\Gamma_2 = \{u, v\}, \rho_1 = \{0_N, \mathcal{A}, \mathcal{B}\}, \rho_2 = \{0_N, \mathcal{C}, \mathcal{D}, \mathcal{H}\}.$

$$\mathcal{A} = \langle (\frac{2}{10}, \frac{8}{10}, \frac{9}{10}), (\frac{1}{10}, \frac{7}{10}, \frac{8}{10}) \rangle, \mathcal{B} = \langle (\frac{3}{10}, \frac{5}{10}, \frac{6}{10}), (\frac{4}{10}, \frac{6}{10}, \frac{7}{10}) \rangle,$$

$$e = \langle (\frac{8}{10}, \frac{3}{10}, \frac{1}{10}), (\frac{9}{10}, \frac{2}{10}, \frac{2}{10}) \rangle, \quad \mathcal{D} = \langle (\frac{7}{10}, \frac{4}{10}, \frac{4}{10}), (\frac{6}{10}, \frac{5}{10}, \frac{3}{10}) \rangle,$$

$$\mathcal{G} = \langle (\frac{3}{10}, \frac{7}{10}, \frac{8}{10}), (\frac{2}{10}, \frac{6}{10}, \frac{7}{10}) \rangle, \quad \mathcal{H} = \langle (\frac{7}{10}, \frac{4}{10}, \frac{2}{10}), (\frac{8}{10}, \frac{3}{10}, \frac{3}{10}) \rangle.$$

Now $\{1_N, \mathcal{A}^c, \mathcal{B}^c, \mathcal{G}^c\}$ is G_N - αCs of (Γ_1, ρ_1) . Here $\psi^{-1}(H) = \mathcal{G}^c$ which is G_N - αCs but not G_N -Cs. Hence, ψ is G_N - αCCF but not G_N -CCF.

(ii) G_N - π CCF $\not\longrightarrow$ G_N - α CCF and G_N - β CCF $\not\longrightarrow$ G_N - σ CCF

Let $\psi : (\Gamma_1, \rho_1) \to (\Gamma_2, \rho_2)$ be defined as $\psi(p) = w$, $\psi(q) = u$ and $\psi(r) = v$, where $\Gamma_1 = \{p, q, r\}$ and $\Gamma_2 = \{u, v, w\}$, $\rho_1 = \{0_N, \mathcal{A}, \mathcal{B}\}$, $\rho_2 = \{0_N, \mathcal{C}, \mathcal{D}, \mathcal{H}\}$.

$$\mathcal{A} = \langle (\frac{2}{10}, \frac{7}{10}, \frac{7}{10}), (\frac{3}{10}, \frac{7}{10}, \frac{8}{10}), (\frac{1}{10}, \frac{8}{10}, \frac{8}{10}) \rangle, \quad \mathcal{B} = \langle (\frac{3}{10}, \frac{7}{10}, \frac{6}{10}), (\frac{4}{10}, \frac{6}{10}, \frac{7}{10}), (\frac{2}{10}, \frac{7}{10}, \frac{8}{10}) \rangle, \quad \mathcal{B} = \langle (\frac{3}{10}, \frac{7}{10}, \frac{6}{10}), (\frac{4}{10}, \frac{6}{10}, \frac{7}{10}), (\frac{2}{10}, \frac{7}{10}, \frac{8}{10}) \rangle, \quad \mathcal{B} = \langle (\frac{3}{10}, \frac{7}{10}, \frac{6}{10}), (\frac{4}{10}, \frac{6}{10}, \frac{7}{10}), (\frac{2}{10}, \frac{7}{10}, \frac{8}{10}), (\frac{2}{10}, \frac{7}{10}, \frac{8}{10}, \frac{8}{10}), (\frac{2}{10}, \frac{7}{10}, \frac{8}{10}, \frac{8}{10}), (\frac{2}{10}, \frac{8}{10}, \frac{8}{10}, \frac{8}{10}, \frac{8}{10}), (\frac{2}{10}, \frac{8}{10}, \frac{8$$

$$e = \langle (\frac{9}{10}, \frac{1}{10}), (\frac{8}{10}, \frac{2}{10}, \frac{2}{10}), (\frac{8}{10}, \frac{3}{10}, \frac{2}{10}) \rangle, \quad \mathcal{D} = \langle (\frac{8}{10}, \frac{3}{10}, \frac{2}{10}), (\frac{6}{10}, \frac{3}{10}, \frac{3}{10}), (\frac{7}{10}, \frac{4}{10}, \frac{4}{10}) \rangle,$$

$$\mathcal{G} = \langle (\frac{2}{10}, \frac{8}{10}), (\frac{2}{10}, \frac{7}{10}, \frac{8}{10}), (\frac{1}{10}, \frac{9}{10}, \frac{9}{10}) \rangle, \quad \mathcal{H} = \langle (\frac{8}{10}, \frac{2}{10}, \frac{1}{10}), (\frac{7}{10}, \frac{3}{10}, \frac{2}{10}), (\frac{8}{10}, \frac{3}{10}, \frac{3}{10}) \rangle.$$

Now $\{1_N, \mathcal{A}^c, \mathcal{B}^c, \mathcal{G}^c\}$ and $\{1_N, \mathcal{A}^c, \mathcal{B}^c\}$ are G_N - πCs and G_N - αCs of (Γ_1, ρ_1) respectively. Here $\psi^{-1}(H) = \mathcal{G}^c$ which is G_N - πCs but not G_N - αCs . Hence, ψ is G_N - πCCF but not G_N - αCCF . Also $\{1_N, \mathcal{A}^c, \mathcal{B}^c, \mathcal{G}^c\}$ and $\{1_N, \mathcal{A}^c, \mathcal{B}^c\}$ are G_N - βCs and G_N - αCs of (Γ_1, ρ_1) respectively. Here $\psi^{-1}(H) = \mathcal{G}^c$ which is G_N - βCs but not G_N - αCs . Hence, ψ is G_N - βCCF but not G_N - αCCF .

(iii) G_N - $\sigma CCF ightharpoonup G_N$ - αCCF and G_N - $\beta CCF ightharpoonup G_N$ - πCCF

Let $\psi: (\Gamma_1, \rho_1) \to (\Gamma_2, \rho_2)$ be defined as $\psi(p) = s$ and $\psi(q) = r$, where $\Gamma_1 = \{p, q\}$ and $\Gamma_2 = \{r, s\}, \rho_1 = \{0_N, \mathcal{A}, \mathcal{B}\}, \rho_2 = \{0_N, \mathcal{C}, \mathcal{D}, \mathcal{H}\}.$

$$\mathcal{A} = \langle (\frac{3}{10}, \frac{7}{10}, \frac{8}{10}), (\frac{2}{10}, \frac{6}{10}, \frac{8}{10}) \rangle, \mathcal{B} = \langle (\frac{4}{10}, \frac{6}{10}, \frac{7}{10}), (\frac{5}{10}, \frac{5}{10}, \frac{6}{10}) \rangle,$$

$$e = \langle (\frac{8}{10}, \frac{4}{10}, \frac{2}{10}), (\frac{8}{10}, \frac{3}{10}, \frac{3}{10}) \rangle, \mathcal{D} = \langle (\frac{6}{10}, \frac{5}{10}, \frac{5}{10}), (\frac{7}{10}, \frac{4}{10}, \frac{4}{10}) \rangle,$$

$$\mathcal{G} = \langle (\frac{5}{10}, \frac{5}{10}, \frac{6}{10}), (\frac{5}{10}, \frac{5}{10}, \frac{6}{10}) \rangle, \mathcal{H} = \langle (\frac{6}{10}, \frac{5}{10}, \frac{5}{10}), (\frac{6}{10}, \frac{5}{10}, \frac{5}{10}) \rangle.$$

Now $\{1_N, \mathcal{A}^c, \mathcal{B}^c, \mathcal{G}^c\}$ and $\{1_N, \mathcal{A}^c, \mathcal{B}^c\}$ are G_N - σCs and G_N - σCs of (Γ_1, ρ_1) respectively. Here $\psi^{-1}(H) = \mathcal{G}^c$ which is G_N - σCs but not G_N - σCs . Hence, ψ is G_N - σCCF but not G_N - σCCF . Also $\{1_N, \mathcal{A}^c, \mathcal{B}^c, \mathcal{G}^c\}$ and $\{1_N, \mathcal{A}^c, \mathcal{B}^c\}$ are G_N - σCs and G_N - σCs of (Γ_1, ρ_1) respectively. Here $\psi^{-1}(H) = \mathcal{G}^c$ which is G_N - σCs but not G_N - σCs . Hence, ψ is G_N - σCCF but not G_N - σCCF .

Remark 3.4

Let $\psi: (\Gamma_1, \rho_1) \rightarrow (\Gamma_2, \rho_2)$ be a function, where (Γ_1, ρ_1) and (Γ_2, ρ_2) be G_N-TSs. Then

$$G_N$$
-CF G_N -CCF

Example 3.5

(i) G_N - $CF G_N$ -CCF

Let $\psi: (\Gamma_1, \rho_1) \to (\Gamma_2, \rho_2)$ be defined as $\psi(p) = s$ and $\psi(q) = r$, where $\Gamma_1 = \{p, q\}$ and $\Gamma_2 = \{r, s\}, \rho_1 = \{0_N, \mathcal{A}, \mathcal{B}\}, \rho_2 = \{0_N, \mathcal{C}, \mathcal{D}\}.$

$$\mathcal{A} = \langle (\frac{2}{10}, \frac{8}{10}, \frac{9}{10}), (\frac{1}{10}, \frac{7}{10}, \frac{8}{10}) \rangle, \mathcal{B} = \langle (\frac{3}{10}, \frac{5}{10}, \frac{6}{10}), (\frac{4}{10}, \frac{6}{10}, \frac{7}{10}) \rangle,$$

$$e = \langle (\frac{4}{10}, \frac{6}{10}, \frac{7}{10}), (\frac{3}{10}, \frac{5}{10}, \frac{6}{10}) \rangle, \mathcal{D} = \langle (\frac{1}{10}, \frac{7}{10}, \frac{8}{10}), (\frac{2}{10}, \frac{8}{10}, \frac{9}{10}) \rangle,$$

Here, ψ is G_N -CF but not G_N -CCF.

(ii) G_N -CCF $\not\longrightarrow$ G_N -CF

Let $\psi: (\Gamma_1, \rho_1) \to (\Gamma_2, \rho_2)$ be defined as $\psi(p) = v$, $\psi(q) = w$ and $\psi(r) = u$, where $\Gamma_1 = \{p, q, r\}$ and $\Gamma_2 = \{u, v, w\}$, $\rho_1 = \{0_N, \mathcal{A}, \mathcal{B}\}$, $\rho_2 = \{0_N, \mathcal{C}, \mathcal{D}\}$.

$$\mathcal{A} = \big\langle (\frac{2}{10}, \frac{6}{10}, \frac{8}{10}), (\frac{1}{10}, \frac{7}{10}, \frac{9}{10}), (\frac{2}{10}, \frac{8}{10}, \frac{9}{10}) \big\rangle, \ \mathcal{B} = \big\langle (\frac{3}{10}, \frac{5}{10}, \frac{7}{10}), (\frac{2}{10}, \frac{5}{10}, \frac{8}{10}), (\frac{4}{10}, \frac{6}{10}, \frac{7}{10}) \big\rangle,$$

$$e = \langle (\frac{9}{10}, \frac{3}{10}, \frac{1}{10}), (\frac{9}{10}, \frac{2}{10}, \frac{2}{10}), (\frac{8}{10}, \frac{4}{10}, \frac{2}{10}) \rangle, \quad \mathcal{D} = \langle (\frac{8}{10}, \frac{5}{10}, \frac{2}{10}), (\frac{7}{10}, \frac{4}{10}, \frac{4}{10}), (\frac{7}{10}, \frac{5}{10}, \frac{3}{10}) \rangle.$$

Here, ψ is G_N -CCF but not G_N -CF

Theorem 3.6

Let $\psi: (\Gamma_1, \rho_1) \rightarrow (\Gamma_2, \rho_2)$ be a function. Then the following are equivalent:

- (1) ψ is G_N-CCF.
- (2) $\psi^{-1}(K) \in G_N$ -Os(Γ_1) for any $K \in G_N$ -Cs(Γ_2).
- (3) For each $k \in \Gamma_1$ and each $L \in G_N$ -Os(Γ_2) with $\psi(k) \notin L$, there exists $M \in G_N$ -Cs(Γ_2) such that $k \notin M$ and $\psi^{-1}(L) \subset M$.
- (4) ψ is G_N -CCF at any $k \in \Gamma_1$.
- (5) $\psi^{-1}(K) \subset G_N$ -intr $(\psi^{-1}(K))$ for any $K \in G_N$ -Cs (Γ_2)
- (6) G_N - $clo(\psi^{-1}(L)) \subset \psi^{-1}(L)$ for any $L \in G_N$ - $Os(\Gamma_2)$.
- (7) G_N - $clo(\psi^{-1}(G_N$ - $intr(Q)) \subset \psi^{-1}(G_N$ -intr(Q)) for any $Q \subset \Gamma_2$.
- $(8) \psi^{-1}(G_N-clo(Q)) \subset G_N-intr(\psi^{-1}(G_N-clo(Q)))$ for any $Q \subset \Gamma_2$.

Proof:

- (1) \Rightarrow (2) Let $K \in G_N$ -Cs(Γ_2). Then $\Gamma_2 K \in G_N$ -Os(Γ_2). By (1), $\psi^{-1}(\Gamma_2 K) = \Gamma_1 \psi^{-1}(K) \in G_N$ -Cs(Γ_1). Thus $\psi^{-1}(K) \in G_N$ -Os(Γ_1).
- $(1) \Rightarrow (3) \text{ Let } k \in \Gamma_1 \text{ and } L \in G_N\text{-Os}(\Gamma_2) \text{ with } \psi(k) \notin L. \text{ Then } k \notin \psi^{-1}(L). \text{ By } (1), \ \psi^{-1}(L) \in G_N\text{-Cs}(\Gamma_1). \text{ Put } M = \psi^{-1}(L). \text{ Then } \psi^{-1}(L) \subset \text{Mand } k \notin M.$
- $(3) \Rightarrow (1) \text{ Let } L \in G_N\text{-Os}(\Gamma_2). \text{ For each } k \in \psi^{-1}(\Gamma_2\text{-}L), \ \psi(k) \notin L. \text{ By (3), there exists } M_k \in G_N\text{-Cs}(\Gamma_1) \text{ such that } k \notin M_k \text{ and } \psi^{-1}(L) \subset M_k. \text{ Then } k \in \Gamma_1\text{-}M_k \subset \Gamma_1\text{-}\psi^{-1}(L) = \psi^{-1}(\Gamma_2\text{-}L).$ We have, $\bigcup_{k \in \psi^{-1}(\Gamma_2-L)} \{k\} \subset \bigcup_{k \in \psi^{-1}(\Gamma_2-L)} \{\Gamma_1-M_k\} \subset \psi^{-1}(\Gamma_2-L).$

Thus
$$\psi^{-1}(\Gamma_2 - L) = \bigcup_{k \in \psi^{-1}(\Gamma_2 - L)} \{\Gamma_1 - M_k\} \in G_N - Os(\Gamma_1)$$
. This implies $\psi^{-1}(L) \in G_N - Cs(\Gamma_1)$.

Hence ψ is G_N -CCF.

- $(2) \Rightarrow (4) \text{ Let } k \in \Gamma_1 \text{ and } L \in G_N\text{-Cs}(\Gamma_2, \psi(k)). \text{ By } (2), \psi^{-1}(L) \in G_N\text{-Os}(\Gamma_1). \text{ Put } M = \psi^{-1}(L). \text{ We have } M \in G_N\text{-Os}(\Gamma_1, k) \text{ and } \psi(M) \subset L.$
- $(4)\Rightarrow (5)$ Let $K\in G_N\text{-Cs}(\Gamma_2)$. For each $k\in \psi^{-1}(K)$, $\psi(k)\in K$. By (4), there exists $M\in G_N\text{-Os}(\Gamma_1,k)$ such that $\psi(M)\subset K$. Since $k\in M\subset \psi^{-1}(K)$, we have $k\in G_N\text{-}intr(\psi^{-1}(K))$. This implies $\psi^{-1}(K)\subset G_N\text{-}intr(\psi^{-1}(K))$.
- $(5) \Rightarrow (6) \text{ Let } L \in G_N\text{-Os}(\Gamma_2). \text{ Then } \Gamma_2\text{--}L \in G_N\text{-Cs}(\Gamma_2). \text{ By } (5), \ \psi^{-1}(\Gamma_2\text{--}L) \subset G_N\text{-}\\ intr(\psi^{-1}(\Gamma_2\text{--}L) = G_N\text{-}intr(\Gamma_1\text{--}\psi^{-1}(L)) = \Gamma_1\text{--}G_N\text{-}clo(\psi^{-1}(L)). \text{ Thus } G_N\text{-}clo(\psi^{-1}(L) \subset \psi^{-1}(L).$
- (6) \Rightarrow (7). Let $Q \subset \Gamma_2$. Since G_N - $intr(Q) \in G_N$ -Os(Γ_2), By (6), we have G_N - $clo(\psi^{-1}(G_N$ - $intr(Q))) \subset \psi^{-1}(G_N$ -intr(Q)).

- $(7) \Rightarrow (8). \text{ Let } Q \subset \Gamma_2. \text{ By } (7), G_{N}\text{-}clo(\psi^{-1}(G_{N}\text{-}intr(\Gamma_2\text{-}Q))) \subset \psi^{-1}(G_{N}\text{-}intr(\Gamma_2\text{-}Q)).$ Then, $G_{N}\text{-}clo(\psi^{-1}(G_{N}\text{-}intr(\Gamma_2\text{-}Q))) = G_{N}\text{-}clo(\psi^{-1}(\Gamma_2\text{-}G_{N}\text{-}clo(Q))) = G_{N}\text{-}clo(\Gamma_1\text{-}\psi^{-1}(G_{N}\text{-}clo(Q))) = G_{N}\text{-}clo(Q))) = \Gamma_1\text{-}G_{N}\text{-}intr(\psi^{-1}(G_{N}\text{-}clo(Q))), and } \psi^{-1}(G_{N}\text{-}intr(\Gamma_2\text{-}Q))) = \Gamma_1\text{-}\psi^{-1}(G_{N}\text{-}clo(Q)).$ Thus $\psi^{-1}(G_{N}\text{-}clo(Q)) \subset G_{N}\text{-}intr(\psi^{-1}(G_{N}\text{-}clo(Q))).$
- (8) ⇒ (1) Let Q ∈ G_N-Os(Γ₂). Then Γ₂− Q ∈ G_N-Cs(Γ₂)). By (8), Γ₁− ψ⁻¹(Q) = $\psi^{-1}(\Gamma_2 Q) = \psi^{-1}(G_{N}-clo(\Gamma_2 Q)) \subset G_{N}-intr(\psi^{-1}(G_{N}-clo(\Gamma_2 Q))) = G_{N}-intr(\psi^{-1}(\Gamma_2 Q))$. Now, G_N-intr($\psi^{-1}(\Gamma_2 Q)$) = G_N-intr($(\nabla_1 \nabla_1 -$

Theorem 3.7

A mapping ψ : $(\Gamma_1, \rho_1) \rightarrow (\Gamma_2, \rho_2)$ is G_N - αCCF if and only if it is both G_N - πCCF and G_N - σCCF .

Proof

Necessity.It is clear from Remark 3.2

Sufficiency.Let K be a G_N -Os(Γ_2). Then by hypothesis, $\psi^{-1}(K)$ is both G_N - π Cs(Γ_1) and G_N - σ Cs(Γ_1). Therefore G_N - $clo(G_N$ - $intr(\psi^{-1}(K))) \subset \psi^{-1}(K)$ and G_N - $intr(G_N$ - $clo(\psi^{-1}(K))) \subset \psi^{-1}(K)$. We have G_N - $intr(G_N$ - $clo(\psi^{-1}(K))) \subset G_N$ - $intr(\psi^{-1}(K))$. That is G_N - $intr(G_N$ - $clo(\psi^{-1}(K))) \subset G_N$ - $intr(\psi^{-1}(K)) \subset G_N$ - $intr(\psi^{-1}($

Theorem 3.8

Let $\psi: (\Gamma_1, \rho_1) \rightarrow (\Gamma_2, \rho_2)$ be a function from two G_N -TSs. Then the following conditions are equivalent:

- (1) ψ is G_N - π CCF,
- (2) $\psi^{-1}(M)$ is $G_N-\pi Os(\Gamma_1)$ for every G_N -CsM in Γ_2 ,
- (3) $\psi^{-1}(M) \subset G_N$ -intr $(G_N$ -clo $(\psi^{-1}(G_N$ -clo(M)))) for every subset M in Γ_2 ,
- (4) G_N - $clo(G_N$ - $intr(\psi^{-1}(G_N$ - $intr(M)))) <math>\subset \psi^{-1}(M)$ for every subset M in Γ_2 ,
- (5) $M \subset G_N$ -intr $(G_N$ - $clo(\psi^{-1}(G_N$ - $clo(\psi(M)))))$ for every subset M in Γ_1 .

Proof

- $(1) \Leftrightarrow (2)$ is obvious.
- (2) \Rightarrow (3) Let $M \subset \Gamma_2$. Then G_N -clo(M) is a G_N -Cs in Γ_2 . (2) implies that $\psi^{-1}(G_N$ -clo(M)) is a G_N - π Osin Γ_1 . Therefore $\psi^{-1}(G_N$ - $clo(M)) \subset G_N$ - $intr(G_N$ - $clo(\psi^{-1}(G_N$ -clo(M)))). Hence $\psi^{-1}(M) \subset \psi^{-1}(G_N$ - $clo(M)) \subset G_N$ - $intr(G_N$ - $clo(\psi^{-1}(G_N$ -clo(M)))).
 - $(3) \Leftrightarrow (4)$ can be proved by taking complement.

- (3) \Rightarrow (5). Let $M \subset \Gamma_1$. Then $\psi(M) \subset \Gamma_2$. (iii) implies that $\psi^{-1}(\psi(M)) \subset G_N$ -intr $(G_N clo(\psi^{-1}(G_N clo(\psi(M)))))$. Therefore $M \subset \psi^{-1}(\psi(M)) \subset G_N$ -intr $(G_N clo(\psi^{-1}(G_N clo(\psi(M)))))$.
- $(5)\Rightarrow 2$). Let Mbe G_N -Csin Γ_2 . Then $\psi^{-1}(M)\subset \Gamma_1$. By hypothesis $\psi^{-1}(M)\subset G_N$ - $intr(G_N$ - $clo(\psi^{-1}(G_N$ - $clo(\psi(\psi^{-1}(M))))))\subset G_N$ - $intr(G_N$ - $clo(\psi^{-1}(G_N$ - $clo(W))))=G_N$ - $intr(G_N$ - $clo(\psi^{-1}(M)))$. Hence $\psi^{-1}(M)$ is G_N - πOs in Γ_1 .

Theorem 3.9

Let $\psi: (\Gamma_1, \rho_1) \rightarrow (\Gamma_2, \rho_2)$ be a function from two G_N-TSs. Then the following conditions are equivalent:

- (1) ψ is G_N - σ CCF,
- (2) $\psi^{-1}(M)$ is G_N - $\sigma Os(\Gamma_1)$ for every G_N -CsM in Γ_2 ,
- (3) $\psi^{-1}(M) \subset G_N clo(G_N intr(\psi^{-1}(G_N clo(M))))$ for every subset M in Γ_2 ,
- (4) G_N - $clo(G_N$ - $intr(\psi^{-1}(G_N$ - $intr(M)))) <math>\subset \psi^{-1}(M)$ for every subset M in Γ_2 ,
- (5) $M \subset G_N$ - $clo(G_N$ - $intr(\psi^{-1}(G_N$ - $clo(\psi(M)))))$ for every subset M in Γ_1 .

Proof

Proof is similar to Theorem 3.8.

Remark 3.10

We can obtain the above equivalent conditions for G_N - α CCF by Theorem 3.7.

Theorem 3.11

Let $\psi: (\Gamma_1, \rho_1) \rightarrow (\Gamma_2, \rho_2)$ be a function from two G_N-TSs. Suppose that one of the following conditions hold:

- (1) $\psi^{-1}(G_N-clo(K)) \subset G_N-intr(G_N-\alpha clo(\psi^{-1}(K)))$ for each subset K in Γ_2 ,
- (2) G_N - $clo(G_N$ - $aintr(\psi^{-1}(K))) \subset \psi^{-1}(G_N$ -intr(K)) for each subset K in Γ_2 ,
- (3) $\psi(G_N clo(G_N aintr(M))) \subset G_N intr(\psi(M))$ for each subset M in Γ_1 ,
- (4) $\psi(G_N-clo(M)) \subset G_N-intr(\psi(M))$ for each $G_N-\alpha Os\ M$ in Γ_1 .

Then ψ is G_N - αCCF .

Proof

- $(1) \Rightarrow (2)$ is obvious by taking complement in (1).
- $(2) \Rightarrow (3). \text{ Let } M \subset \Gamma_1, \text{ then } \psi(M) \subset \Gamma_2. \text{ Now (ii) implies } G_N\text{-}clo(G_N\text{-}aintr(\psi^{-1}(\psi(M))))$ $\subset \psi^{-1}(G_N\text{-}intr(\psi(M))). \text{ That is } G_N\text{-}clo(G_N\text{-}aintr(M)) \subset G_N\text{-}clo(G_N\text{-}aintr(\psi^{-1}(\psi(M)))) \subset \psi^{-1}(G_N\text{-}intr(\psi(M))).$ $\text{Hence } \psi(G_N\text{-}clo(G_N\text{-}aintr(M))) \subset \psi(\psi^{-1}(G_N\text{-}intr(\psi(M)))) \subset G_N\text{-}intr(\psi(M)).$

 $(3) \Rightarrow (4). \text{ Let } M \subset \Gamma_1 \text{be } G_N\text{-}\alpha Os. \text{ Then } \psi(G_N\text{-}clo(G_N\text{-}\alpha intr(M))) \subset G_N\text{-}intr(\psi(M)).$ That is $\psi(G_N\text{-}clo(M)) = \psi(G_N\text{-}clo(G_N\text{-}\alpha intr(M))) \subset G_N\text{-}intr(\psi(M)), \text{ since } G_N\text{-}\alpha intr(M) = M.$ Hence $\psi(G_N\text{-}clo(M)) \subset G_N\text{-}intr(\psi(M)).$

Suppose (4) holds: Let $M \subset \Gamma_2$ be G_N -Os. Then $\psi^{-1}(M) \subset \Gamma_1$ and G_N - $\alpha intr(\psi^{-1}(M))$ is G_N - αOs in Γ_1 . (4) implies that $\psi(G_N$ - $clo(G_N$ - $\alpha intr(\psi^{-1}(M)))) \subset G_N$ - $intr(\psi(G_N$ - $\alpha intr(\psi^{-1}(M)))) \subset G_N$ - $intr(\psi(\psi^{-1}(M))) \subset G_N$ - $intr(\psi(\psi^{-1}(M))) \subset G_N$ - $intr(\psi(\psi^{-1}(M)))) \subset \psi^{-1}(\psi(G_N$ - $clo(G_N$ - $\alpha intr(\psi^{-1}(M))))) \subset \psi^{-1}(M)$. We have G_N - $clo(G_N$ - $intr(\psi^{-1}(M))) \subset G_N$ - $clo(G_N$ - $\alpha intr(\psi^{-1}(M))) \subset \psi^{-1}(M)$. Therefore $\psi^{-1}(M)$ is a G_N - αCs and hence M is a G_N - αCs . Thus ψ is G_N - αCCF .

Theorem 3.12

Let $\psi: (\Gamma_1, \rho_1) \rightarrow (\Gamma_2, \rho_2)$ be a function from two G_N -TSs. Then ψ is G_N - σ CCF if $\psi^{-1}(M) \subset G_N$ - $clo(G_N$ - $intr(\psi^{-1}(G_N$ -clo(M))))) for every subset M in Γ_2 .

Proof

Let M be G_N -Os in Γ_2 . Then M^c is G_N -Cs in Γ_2 . By hypothesis $\psi^{-1}(M^c) \subset G_N$ - $clo(G_N$ - $intr(\psi^{-1}(G_N$ - $clo(M^c))))) = G_N$ - $clo(G_N$ - $intr(\psi^{-1}(M^c)))$. This implies $(\psi^{-1}(M))^c \subset G_N$ - $clo(G_N$ - $intr(\psi^{-1}(M^c))) = (G_N$ - $intr(G_N$ - $clo(\psi^{-1}(M))))^c$. Thus G_N - $intr(G_N$ - $clo(\psi^{-1}(M))) \subset \psi^{-1}(M)$. Hence $\psi^{-1}(M)$ is a G_N - σC s in Γ_1 . Thus ψ is G_N - σC CF.

Theorem 3.13

Let $\psi: (\Gamma_1, \rho_1) \rightarrow (\Gamma_2, \rho_2)$ be a function from two G_N-TSs. Suppose one of the following conditions hold:

- (1) $\psi(G_N \alpha clo(K)) \subset G_N intr(\psi(K))$ for each subset K in Γ_1 .
- (2) G_N - $\alpha clo(\psi^{-1}(M)) \subset \psi^{-1}(G_N$ -intr(M)) for each subset M in Γ_2 .
- (3) $\psi^{-1}(G_N\text{-}clo(M)) \subset G_N\text{-}aintr(\psi^{-1}(M))$ for each subset M in Γ_2 . Then ψ is $G_N\text{-}aCCF$.

Proof

- $(1) \Rightarrow (2) \text{ Let } M \subset \Gamma_2. \text{ Then } \psi^{-1}(M) \subset \Gamma_1. \ (1) \text{ implies that } \psi(G_N\text{-}\alpha\mathit{clo}(\psi^{-1}(M))) \subset G_N\text{-}intr(\psi(\psi^{-1}(M))) \subset G_N\text{-}intr(M). \text{ Now } \psi^{-1}(\psi(G_N\text{-}\alpha\mathit{clo}(\psi^{-1}(M)))) \subset \psi^{-1}(G_N\text{-}intr(M)). \text{ Therefore } G_N\text{-}\alpha\mathit{clo}(\psi^{-1}(M)) \subset \psi^{-1}(\psi(G_N\text{-}\alpha\mathit{clo}(\psi^{-1}(M)))) \subset \psi^{-1}(G_N\text{-}intr(M)). \text{ Hence } G_N\text{-}\alpha\mathit{clo}(\psi^{-1}(M)) \subset \psi^{-1}(G_N\text{-}intr(M)).$
 - $(2) \Rightarrow (3)$ is obvious by taking complement in (2).

Suppose (3) holds: Let $M \subset \Gamma_2$ be G_N -Cs. Then, by hypothesis, $\psi^{-1}(G_N$ - $clo(M)) \subset G_N$ - $\alpha intr(\psi^{-1}(M))$. That is $\psi^{-1}(M) = \psi^{-1}(G_N$ - $clo(M)) \subset G_N$ - $\alpha intr(\psi^{-1}(M)) \subset \psi^{-1}(M)$. Therefore $\psi^{-1}(M)$ is G_N - αOs in Γ_1 . Hence ψ is G_N - αCCF .

Theorem 3.14

Let $\psi : (\Gamma_1, \rho_1) \rightarrow (\Gamma_2, \rho_2)$ be a bijective function from two G_N-TSs. Then ψ is G_N- π CCF if G_N- $clo(\psi(M)) \subset \psi(G_N-\pi intr(M))$ for each subset M of Γ_1 .

Proof

Let $K \subset \Gamma_2$ be G_N -Cs. Then $\psi^{-1}(K) \subset \Gamma_1$. By hypothesis G_N - $clo(\psi(\psi^{-1}(K))) \subset \psi(G_N$ - $\pi intr(\psi^{-1}(K)))$. Now $K = G_N$ - $clo(W) = G_N$ - $clo(\psi(\psi^{-1}(K))) \subset \psi(G_N$ - $\pi intr(\psi^{-1}(K)))$. Therefore $\psi^{-1}(K) \subset \psi^{-1}(\psi(G_N$ - $\pi intr(\psi^{-1}(K)))) = G_N$ - $\pi intr(\psi^{-1}(K)) \subset \psi^{-1}(K)$. Hence $\psi^{-1}(K)$ is G_N - πOs and hence ψ is a G_N - πCCF .

Theorem 3.15

Let $\psi: (\Gamma_1, \rho_1) \rightarrow (\Gamma_2, \rho_2)$ be a G_N - αCCF from two G_N -TSs. Then the following properties hold:

- (1) G_N - $\alpha clo(\psi^{-1}(M)) \subset \psi^{-1}(G_N$ - $intr(G_N$ - $\alpha clo(M)))$ for each G_N -Os M in Γ_2 .
- (2) $\psi^{-1}(G_N-clo(G_N-\alpha intr(M))) \subset G_N-\alpha intr(\psi^{-1}(M))$ for each G_N -Cs M in Γ_2 .

Proof

- (1) Let $M \subset \Gamma_2$ be G_N -Os. By hypothesis, $\psi^{-1}(M)$ is G_N - αCs in Γ_1 . Then G_N - $\alpha clo(\psi^{-1}(M)) = \psi^{-1}(M) = \psi^{-1}(G_N$ - $intr(M)) \subset \psi^{-1}(G_N$ - $intr(G_N$ - $\alpha clo(M))$. Hence G_N - $\alpha clo(\psi^{-1}(M)) \subset \psi^{-1}(G_N$ - $intr(G_N$ - $\alpha clo(M))$.
 - (2) can be proved easily by taking complement of (1).

Theorem 3.16

Let $\psi: (\Gamma_1, \rho_1) \rightarrow (\Gamma_2, \rho_2)$ be a function from two G_N-TSs. Then the following conditions are equivalent:

- (1) ψ is G_N - αCCF ,
- (2) for each $k \in \Gamma_1$ and each G_N -Cs M containing $\psi(k)$, there exists a G_N - α Os K in Γ_1 and $k \in K$ such that $K \subset \psi^{-1}(M)$,
- (3) for each $k \in \Gamma_1$ and each G_N -Cs M containing $\psi(k)$, there exists a G_N - α Os K in Γ_1 and $k \in K$ such that $\psi(K) \subset M$.

Proof

- (1) \Rightarrow (2) Let $M \subset \Gamma_2$ be G_N -Cs and $\psi(k) \in M$. By hypothesis, $\psi^{-1}(M)$ is G_N - α Os in Γ_1 . Therefore G_N - $\alpha intr(\psi^{-1}(M)) = \psi^{-1}(M)$. Put $K = G_N$ - $\alpha intr(\psi^{-1}(M))$. Then K is a G_N - α Os in Γ_1 and $K \subset \psi^{-1}(M)$.
- $(2)\Rightarrow (3)$ Let $M\subset \Gamma_2$ be G_N -Cs and $\psi(k)\in M$. By hypothesis, there exists a G_N - $\alpha Os\ K$ in Γ_1 and $k\in K$ such that $K\subset \psi^{-1}(M)$. Therefore $\psi(K)\subset \psi(\psi^{-1}(M))\subset M$. Thus $\psi(K)\subset M$.

(3) ⇒ (1) Let M be G_N -Cs in Γ_2 . Let $k \in \Gamma_1$ and $\psi(k) \in M$. By hypothesis, there exists a G_N -αOs K in Γ_1 and $k \in K$ such that $\psi(K) \subset M$. This implies $k \in K \subset \psi^{-1}(\psi(K)) \subset \psi^{-1}(M)$. That is $k \in \psi^{-1}(M)$. Since K is G_N -αOs, $K = G_N$ -αintr($K \cap G_N$ -αintr(K

Theorem 3.17

- (1) A function $\psi: (\Gamma_1, \rho_1) \rightarrow (\Gamma_2, \rho_2)$ is a G_N - σ CCF from two G_N -TSs iff $\psi^{-1}(G_N$ - $\sigma clo(M)) \subset G_N$ - $\sigma intr(\psi^{-1}(G_N$ -clo(M))) for each subset M in Γ_2 .
- (2) A function $\psi: (\Gamma_1, \rho_1) \rightarrow (\Gamma_2, \rho_2)$ is a G_N - π CCF from two G_N -TSs iff $\psi^{-1}(G_N$ - $\pi clo(M)) \subset G_N$ - $\pi intr(\psi^{-1}(G_N$ -clo(M))) for each subset M in Γ_2 .

Proof

(1) **Necessity.** Let $M \subset \Gamma_2$. Then G_N -clo(M) is G_N -Cs in Γ_2 . By hypothesis, $\psi^{-1}(G_N$ -clo(M)) is G_N - σ Os in Γ_1 . Therefore $\psi^{-1}(G_N$ - σ $clo(M)) \subset \psi^{-1}(G_N$ - $clo(M)) = G_N$ - σ $intr(\psi^{-1}(G_N$ -clo(M)). Hence $\psi^{-1}(G_N$ - σ $clo(M)) \subset G_N$ - σ $intr(\psi^{-1}(G_N$ -clo(M)).

Sufficiency. Let $M \subset \Gamma_2$ be G_N -Cs. Then G_N -clo(M) = M. By hypothesis $\psi^{-1}(G_N$ - $\sigma clo(M)) \subset G_N$ - $\sigma intr(\psi^{-1}(G_N$ - $clo(M))) = G_N$ - $\sigma intr(\psi^{-1}(M))$. Now $\psi^{-1}(M) \subset \psi^{-1}(G_N$ - $\sigma clo(M)) \subset G_N$ - $\sigma intr(\psi^{-1}(M)) \subset \psi^{-1}(M)$. This implies $\psi^{-1}(M) = G_N$ - $\sigma intr(\psi^{-1}(M))$. Hence $\psi^{-1}(M)$ is G_N - σOs in Γ_1 and hence ψ is G_N - σCCF .

(2) Proof is alike to (1).

Theorem 3.18

A function $\psi: (\Gamma_1, \rho_1) \rightarrow (\Gamma_2, \rho_2)$ is a G_N - αCCF from two G_N -TSs iff $\psi^{-1}(G_N$ - $\alpha clo(M))$ $\subset G_N$ - $\alpha intr(\psi^{-1}(G_N$ -clo(M))) for each subset M in Γ_2 .

Proof:

We can obtain the proof for G_N - α CCF by Theorem 3.7 and 3.17.

Related Separation Axioms in G_N-TSs

Definition 4.1

Let (Γ_1, ρ_1) and (Γ_2, ρ_2) be G_N -TSs. Then $\psi : \Gamma_1 \to \Gamma_2$ is said to be

- (Δ_1) G_N-Open if for each G_N-Os M in Γ_1 , $\psi(M)$ is a G_N-Os in Γ_2 ,
- (Δ_2) G_N-Closed if for each G_N-Cs M in Γ_1 , $\psi(M)$ is a G_N-Cs in Γ_2 ,
- $(Δ_3)$ Almost G_N -α-Continuous Function $(G_N$ -AαCF) if for each G_N -rOs M in $Γ_2$, $ψ^{-1}(M)$ is a G_N -αOs in $Γ_1$.
- $(Δ_4)$ Almost Contra G_N -Continuous Function $(G_N$ -ACCF) if for each G_N -rOs M in $Γ_2$, $ψ^{-1}(M)$ is a G_N -Cs in $Γ_1$,
- (Δ₅) Almost Contra G_N-α-Continuous Function (G_N-AαCCF) if for each G_N-

- rOs M in Γ_2 , $\psi^{-1}(M)$ is a G_N - α Cs in Γ_1 ,
- (Δ_6) Almost Contra G_N -σ-Continuous Function $(G_N$ -AσCCF) if for each G_N -rOs M in Γ_2 , $\psi^{-1}(M)$ is a G_N -σCs in Γ_1 ,
- $(Δ_7)$ Almost Contra G_N - π -Continuous Function $(G_N$ - $A\pi CCF)$ if for each G_N -rOs M in $Γ_2$, $\psi^{-1}(M)$ is a G_N - πCs in $Γ_1$.

Definition 4.2

- A G_N -TS(Γ_1 , ρ_1) is said to be
- (Δ_1) G_N -connected if it cannot be expressed as the union of two nonempty, disjoint G_N -Os,
- (Δ_2) G_N - α -connected if it cannot be expressed as the union of two nonempty, disjoint G_N - αO_S .

Theorem 4.3

If $\psi: (\Gamma_1, \rho_1) \rightarrow (\Gamma_2, \rho_2)$ is G_N -A α CCF and surjective function and Γ_1 is G_N - α -connected space, then Γ_2 is G_N -connected space.

Proof

Suppose that Γ_2 is not G_N -connected space. Then there exists non-empty disjoint G_N -Os K and L such that $\Gamma_2 = K \cup L$. Therefore, K and L are G_N -rOs in Γ_2 . Since ψ is G_N -A α CCF, then $\psi^{-1}(K)$ and $\psi^{-1}(L)$ are G_N - α Cs in Γ_1 . Moreover, $\psi^{-1}(K)$ and $\psi^{-1}(L)$ are nonempty disjoint and $\Gamma_1 = \psi^{-1}(K) \cup \psi^{-1}(L)$. This shows that Γ_1 is not G_N - α -connected. This is a contradiction. By contradiction, Γ_2 is G_N -connected.

Definition 4.4

A G_N -TS (Γ_1, ρ_1) is said to be G_N - α -normal if every pair of nonempty disjoint G_N -Cs can be separated by disjoint G_N - α Os.

Definition 4.5

A G_N -TS(Γ_1 , ρ_1) is said to be strongly G_N -normal if for every pair of non empty disjoint G_N -Cs K and L in Γ_1 there exist disjoint G_N -Os P and Q such that $K \subseteq P$, $L \subseteq Q$ and G_N - $clo(P) \cap G_N$ - $clo(Q) = \phi$.

Theorem 4.6

If (Γ_2, ρ_2) is strongly G_N -normal and $\psi : (\Gamma_1, \rho_1) \rightarrow (\Gamma_2, \rho_2)$ is G_N -A α CCF and G_N -Closed injective function, then (Γ_1, ρ_1) is G_N - α -normal.

Proof

Let K and L be disjoint nonempty G_N -Cs of Γ_1 . Since ψ is injective and G_N -Closed, $\psi(K)$ and $\psi(L)$ are disjoint G_N -Cs. Since (Γ_2, ρ_2) is strongly G_N -normal, there exists G_N -Os P and Q such that $\psi(K) \subseteq P$, $\psi(L) \subseteq Q$ and G_N - $clo(P) \cap G_N$ - $clo(Q) = \phi$. Then, since G_N -clo(P)

and G_N -clo(Q) are G_N -rCs and ψ is G_N - $A\alpha CCF$, $\psi^{-1}(G_N$ -clo(P)) and $\psi^{-1}(G_N$ -clo(Q)) are G_N - αOs . Since $K \subseteq \psi^{-1}(G_N$ -clo(P)), $L \subseteq \psi^{-1}(G_N$ -clo(Q)), and $\psi^{-1}(G_N$ -clo(P)) and $\psi^{-1}(G_N$ -clo(Q)) are disjoint, (Γ_1, ρ_1) is G_N - α -normal.

Definition 4.7

A G_N -TS (Γ, G_N) is said to be a G_N -P $_\Sigma$ if for any G_N -Os M of Γ and each $k \in \Gamma$, there exists a G_N -rCs N containing k such that $k \in N \subseteq M$.

Theorem 4.8

If $\psi: (\Gamma_1, \rho_1) \to (\Gamma_2, \rho_2)$ is G_N -A α CCF and Γ_2 is G_N - P_{Σ} , then ψ is G_N - α CF.

Proof

Let M be a G_N -Os in Γ_2 . Since Γ_2 is G_N -P $_\Sigma$, there exists a family Ω whose members are G_N -rCs of Γ_2 such that $M = \bigcup \{N \colon N \in \Omega\}$. Since ψ is G_N -A α CCF, $\psi^{-1}(N)$ is G_N - α Os in Γ_1 for each $N \in \Omega$ and hence $\psi^{-1}(M)$ is G_N - α Os in Γ_1 . Therefore ψ is G_N - α CF.

Definition 4.9

A G_N -TS (Γ, G_N) is said to be weakly G_N -P $_\Sigma$ if for any G_N -rOs M of Γ and each $k \in \Gamma$, there exists a G_N -rCs N containing k such that $k \in N \subseteq M$.

Theorem 4.10

If $\psi: (\Gamma_1, \rho_1) \rightarrow (\Gamma_2, \rho_2)$ is G_N -A α CCF and Γ_2 is weakly G_N -P $_\Sigma$, then ψ is G_N -A α CF.

Proof

Let M be a G_N -rOs in Γ_2 . Since Γ_2 is weakly G_N -P $_\Sigma$, there exists a family Ω whose members are G_N -rCs of Γ_2 such that $M = \bigcup \{N \colon N \in \Omega\}$. Since ψ is G_N -A α CCF, $\psi^{\text{-1}}(N)$ is G_N - α Os in Γ_1 for each $N \in \Omega$ and hence $\psi^{\text{-1}}(M)$ is G_N - α Os in Γ_1 . Therefore ψ is G_N -A α CF.

Theorem 4.11

Let (Γ_1, ρ_1) , (Γ_2, ρ_2) and (Γ_3, ρ_3) be G_N -TSs and let $\psi_1 : (\Gamma_1, \rho_1) \rightarrow (\Gamma_2, \rho_2)$ and $\psi_2 : (\Gamma_2, \rho_2) \rightarrow (\Gamma_3, \rho_3)$ be functions. If ψ_1 is G_N - α -irresolute and ψ_2 is G_N - $A\alpha CCF$, then $\psi_2 \circ \psi_1 : (\Gamma_1, \rho_1) \rightarrow (\Gamma_3, \rho_3)$ is G_N - $A\alpha CCF$.

Proof

Let $M \subseteq \Gamma_3$ be any G_N -rCs and let $(\psi_2 \circ \psi_1)(k) \in M$. Then $\psi_2(\psi_1(k)) \in M$. Since ψ_2 is G_N -A α CCF, it follows that there exists a G_N - α Os N containing $\psi_1(k)$ such that $\psi_2(N) \subseteq M$. Since ψ_1 is λ - α -irresolute function, it follows that there exists a G_N - α Os P

containing k such that $\psi_1(P) \subseteq N$. From here we obtain that $(\psi_2 \circ \psi_1)(P) = \psi_2(\psi_1(P)) \subseteq \psi_2(N)$ $\subseteq M$. Thus we show that $\psi_2 \circ \psi_1$ is G_N -A α CCF.

Conclusion

In this paper we studied about Contra Continuous Functions (CCF) by means of Neutrosophic Sets in Generalized Topological Spaces (G_N -TSs). Then, we deliberate certain properties of CCF in G_N -TSs. Further, we talk over about the associations among several types of CCF along with illustrations. Also, we dealt the concept of almost continuous and its contra characteristics in G_N -TSs. Finally, we discuss some separation axioms related to G_N -TSs. This paper can be further developed into several continuous functions and its contra continuity such as G_N -b-continuous, G_N -b*continuous function, contra G_N -b-continuous function in Neutrosophic Generalized Topological Spaces.

On account that the whole lot inside the world is complete of indeterminacy so, the neutrosophic becomes seem and observed their location into research. There exists quite a few utility in all area inclusive of in records era, information system and decision assist device as an instance, relational database structures, semantic web offerings, economic records set detection, new economy's growth, decline evaluation and many others. These notions can also help the researcher in making algorithm to clear up problems.

References

- [1] Atanassov.K.T: Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1986), 87–96.
- [2] Bhuvaneshwari J, Keskin A and Rajesh N: Contra-Continuity via topological ideals, Journal of Advanced Research in Pure Mathematics, 3(1)(2011), 40-51, Online ISSN: 1943-2380.
- [3] Chang.C.L: Fuzzy topological spaces, Journal of Mathematical Analysis and Application, 24(1968), 183–190.
- [4] Dogan Coker: An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, 88(1997), 81–89.
- [5] Floretin Smarandache: Neutrosophy and Neutrosophic Logic, First InternationalConference on Neutrosophy, Neutrosophic Logic, Set, Probability, and Statistics University of New Mexico, Gallup, NM 87301, USA, 2002.
- [6] Floretin Smarandache: Neutrosophic Set: A Generalization of Intuitionistic Fuzzy set, Journal of Defense Resources Management, 1(2010), 107–116.
- [7] Floretin Smarandache: A Unifying Field in Logic: Neutrosophic Logic. Neutrosophy, Neutrosophic set, Neutrosophic Probability, American Research Press, Rehoboth, NM, 1999.

- [8] Jayanthi D, Contra continuity on generalized topological spaces, Acta Math Hungar, (2012), ISSN No. 0236-5294, doi: 10.1007/s10474-012-0211-x.
- [9] Jeyaraman M and Yuvarani A: Intuitionistic Fuzzy Contra Alpha Generalized Semi Continuous Mappings, The Journal of Fuzzy Mathematics, 24 (1)(2016), 1-12.
- [10] Li Z and Zhu W: Contra continuity on generalized topological spaces, Acta Math Hungar, (2012), ISSN No. 0236-5294,DOI: 10.1007/s10474-012-0215-6.
- [11] Raksha Ben .N, Hari Siva Annam. G: Some new open sets in μ_N topological space, Malaya Journal of Matematik, 9(1)(2021), 89-94.
- [12] Raksha Ben .N, Hari Siva Annam. G: Generalized Topological Spaces via Neutrosophic Sets, J. Math. Comput. Sci., 11(2021), 716-734.
- [13] Salama A.A and Alblowi S.A: Neutrosophic set and Neutrosophic topological space, ISOR J. Mathematics, 3(4)(2012), 31–35.
- [14] Salama A.A, Florentin Smarandache and Valeri Kroumov: Neutrosophic Closed set and Neutrosophic Continuous Function, Neutrosophic Sets and Systems, 4(2014), 4–8.
- [15] Santhi P, Yuvarani A and Vijaya S, Irresolute and its Contra Functions in Generalized Neutrosophic Topological Spaces, Neutrosophic Sets and Systems, 51(2022), 123-133,doi: 10.5281/zenodo.7135261.
- [16] Vijaya S and Santhi P: Characterization of Almost (α, μ)-Continuous Functions and itsproperties, International Science and Technology Journal, 7(3)(2018), 1-8, Online ISSN: 1632-2882.
- [17] Vijaya S, Santhi P and Yuvarani A: Contra Nα-I-Continuity over Nano Ideals, Ratio Mathematica, 41(2021), 283-290.
- [18] Wadel Faris Al-Omeri and Florentin Smarandache: New Neutrosophic Sets via Neutrosophic Topological Spaces, New Trends in Neutrosophic Theory and Applications, (2)(2016), 1-10.
- [19] Zadeh. L.A: Fuzzy set, Inform and Control, 8(1965), 338–353.